Caracterización molecular de los tumores de páncreas y vías biliares
DOI:
https://doi.org/10.22529/me.2023.8(2)03Palabras clave:
cáncer de páncreas, colangiocarcinoma, mutaciones moleculares, factores pronósticosResumen
INTRODUCCIÓN: Los tumores de páncreas y vías biliares en general se diagnostican en una etapa avanzada, cuando las opciones curativas son escasas, lo cual se traduce a altas tasas de mortalidad. La resección completa es la única cura, pero sólo un pequeño porcentaje de pacientes presentan enfermedad en estadio temprano al diagnóstico. Por otro lado, entre los pacientes que se someten a cirugía curativa, tasas de recurrencia son extremadamente altas. En el momento actual no se dispone de un tratamiento sistémico claramente efectivo más allá de la primera línea y esto hace que nuevos estudios de investigación relacionados a la biología molecular que pueda definir nuevas líneas de tratamiento dirigido sea unanecesidad de urgencia en este contexto.OBJETIVO: Determinar la frecuencia de las diferentes alteraciones moleculares en tumores de vía biliar y páncreas y estudiar si existe relación entre la mutación hallada y la sobrevida de los pacientes. Evaluar el factor pronóstico de las variables de laboratorio al diagnóstico.MATERIAL Y MÉTODOS: Estudio retrospectivo y descriptivo, en el que se incluyeron 110 pacientes con diagnóstico de tumores de vías biliares o pancreáticos, evaluados por el equipo de la unidad de tumores digestivos del Hospital 12 de octubre entre febrero 2019 hasta el mes de julio del 2020.RESULTADOS: Se incluyeron 64 pacientes con diagnóstico de tumor de páncreas y 46 con tumores de vías biliares, la edad media fue de 61 años, el 43% de los pacientes se diagnosticó en estadio IV de la enfermedad, la sobrevida para los pacientes con tumores de páncreas en el periodo metastásico fue de 20 meses, 25 meses para los pacientes con tumores biliares. P53, K- ras, CDKN2A y SMAD fueron las mutaciones más frecuentemente encontradas en tumores de páncreas, ARID1A, FGFR e IDH en colangiocarcinoma intrahepático, P53 k-ras y CDKN2A en tumores extrahepáticos. Al investigar acerca de factores pronósticos, la hemoglobina y albúmina alterada al diagnóstico fueron parámetros con resultados estadísticamente significativos en relación con la sobrevida.CONCLUSIONES: Los avances recientes han aclarado las características genéticas y moleculares de tumores biliopancreáticos y ofrecen el potencial para el diagnóstico de base molecular de los mismos. Sin embargo, la aplicabilidad clínica de la mayoría de los marcadores existentes es limitada debido a una falta de sensibilidad y especificidad adecuadas; se requieren estudios adicionales para validar y confirmar la utilidad clínica de algunos marcadores prometedores. Los valores de hemoglobina y albumina aldiagnóstico podrían ser utilizados como factores pronósticos en pacientes con tumores pancreáticos.Descargas
Referencias
Hezel AF, Zhu AX. Systemic therapy for biliary tract cancers. Oncologist. 2008;13:415-423 https://doi.org/10.1634/theoncologist.2007-0252
Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010 ;362 :1273- 1281. https://doi.org/10.1056/NEJMoa0908721
García-Borobia FJ, Jorba-Martín R, Fabregat-Prous J. Adenocarcinoma de páncreas y del área periampular. En: Parrilla-Paricio P, LandaGarcía JI, eds. Cirugía AEC. Manual de la Asociación Española de Cirujanos. Madrid: Médica Panamericana; 2005. pp. 73-584
Friess H, Ko CK, Kleeff J. Pancreaticoduodenectomy, distal pancreatectomy, segmental pancretectomy, total pancretectomy and transduodenal resection of the papilla of Vater. En: Blumgart LH, ed. Surgery of the Liver, Biliary Tract and Pancreas. Philadelphia: Saunders; 2007. pp. 877- 903. https://doi.org/10.1016/B978-1-4160-3256-4.50068-5
Glimelius B, Hoffman K, Sjoden PO, et al. Chemotherapy improves survival and quality of life in advanced pancreatic and biliary cancer. Ann Oncol. 1996; 7:593-600. https://doi.org/10.1093/oxfordjournals.annonc.a010676
Yonemoto N, Furuse J, Okusaka T, et al. A multi-center retrospective analysis of survival benefits of chemotherapy for unresectable biliary tract cancer. Jpn J Clin Oncol. 2007; 37:843-851. https://doi.org/10.1093/jjco/hym116
Sociedad Española de Oncologia Medica (SEOM). Las cifras del cancer en España 2020.
GLOBOCAN 2018: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2018.
Siegel RL, Miller KD, Jemal A. Cancer stadistics 2016. CA Cancer J Clin 2016, 66: 7-30. https://doi.org/10.3322/caac.21332
Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet 2005; 366:1303-1314. https://doi.org/10.1016/S0140-6736(05)67530-7
Siena, S., Drilon, A. E., Sai-Hong Ou, I., Farago, A. F., Patel, M., et al. Entrectinib (RXDX-101), an oral panTrk, ROS1, and ALK inhibitor in patients with advanced solid tumors harboring gene rearrangements. European Journal of Cancer 2015. 51, S724- S725. https://doi.org/10.1016/S0959-8049(16)31947-5
Ardini E., Menichincheri M,Banfi P, Bosotti R., et al. Entrectinib, a PanTRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. 2016 American Association for Cancer Research. Volume 15, Issue 4. https://doi.org/10.1158/1535-7163.MCT-15-0758
Mangeaud A., Elías Panigo DH. RMedic. A simple and intuitive statistical analysis software. Methodo 2018 Mar;3(1): 18-22 https://doi.org/10.22529/me.2018.3(1)05
Burris HA III, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15(6):2403-2413. https://doi.org/10.1200/JCO.1997.15.6.2403
Gourgou-Bourgade S, Bascoul-Mollevi C, Desseigne F, et al. Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial. J Clin Oncol. 2013;31(1):23-29 https://doi.org/10.1200/JCO.2012.44.4869
Peddi PF, Cho M, Wang J, Gao F, Wang-Gillam A. Nab-paclitaxel monotherapy in refractory pancreatic adenocarcinoma. J Gastrointest Oncol. 2013;4(4):370-373 https://doi.org/10.1016/j.pan.2012.12.283
Conroy T, Desseigne F, Ychou M, et al; Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817-1825. https://doi.org/10.1056/NEJMoa1011923
Blanc J-F, Hubner R, Li C-P, et al. PD018 subgroup analysis by prior nonliposomal irinotecan therapy in NAPOLI-1: a phase 3 study of nalIRI±5- fluorouracil/leucovorin in patients with metastatic pancreatic ductal adenocarcinoma previously treated with gemcitabine-based therapy [ESMO GI]. Ann Oncol. 2017;28(suppl) (3). https://doi.org/10.1093/annonc/mdx660.035
Pelzer U, Schwaner I, Stieler J, et al. Best supportive care (BSC) versus oxaliplatin, folinic acid and 5- fluorouracil (OFF) plus BSC in patients for second-line advanced pancreatic cancer: a phase III-study from the German CONKO-study group. Eur J Cancer. 2011;47(11):1676-1681. https://doi.org/10.1016/j.ejca.2011.04.011
Glassman DC, Palmaira RL, Covington CM, et al. Nanoliposomal irinotecan with fluorouracil for the treatment of advanced pancreatic cancer, a single institution experience. BMC Cancer. 2018;18(1):693. https://doi.org/10.1186/s12885-018-4605-1
Wang-Gillam A, Li CP, Bodoky G, et al; NAPOLI-1 Study Group. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016;387(10018):545-557. https://doi.org/10.1016/S0140-6736(15)00986-1
Valle J, Wasan H, Palmer DH et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273-1281. https://doi.org/10.1056/NEJMoa0908721
Bos JL. ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682-9.
Motojima K, Tsunoda T, Kanematsu T, Nagata Y, Urano T, Shiku H. Distinguishing pancreatic carcinoma from other periampullary carcinomas by analysis of mutations in the Kirstenras oncogene. Ann Surg 1991; 214: 65762. https://doi.org/10.1097/00000658-199112000-00003
Almoguera C, Shibata D, Forrester K, Martin J, Amheim N, Perucho M, et al. Most human carcinomas of the exocrine pan-creas contain mutant K-ras genes. Cell, 53 (1988), pp. 549-54 https://doi.org/10.1016/0092-8674(88)90571-5
Pellegata NS, Sessa F, Renault B, Bonato M, Leone BE, Soleia E, et al. Kras and p53 gene mutations in pancreatic cancer. Ductal and nonductal tumors progress through different genetic lessions. Cancer Res, 54 (1994), pp. 1556-60
Tada, M., Yokosuka, O., Omata, M., Ohto, M., & Isono, K. (1990). Analysis of ras gene mutations in biliary and pancreatic tumors by polymerase chain reaction and direct sequencing. Cancer, 66(5), 930-935. https://doi.org/10.1002/1097-0142(19900901)66:5<930::AID-CNCR2820660519>3.0.CO;2-W
Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53549- 554. https://doi.org/10.1016/0092-8674(88)90571-5
Smit VTHBM, Boot AJM, Smits AMM, Fleuren GJ, Cornelisse CJ, Bos JL. KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res 1988; 16:7773-7782. https://doi.org/10.1093/nar/16.16.7773
Ohashi K, Tsutsumi M, Nakajima Y, Nakano H, Konishi Y (1996) Ki-ras point mutations and proliferation activity in biliary tract carcinomas. Br J Cancer 74:930-935. https://doi.org/10.1038/bjc.1996.459
Boberg, K. M., Schrumpf, E., Bergquist, A., Broomé, U., Pares, A., Remotti, H., … Clausen, O. P. F. (2000). Cholangiocarcinoma in primary sclerosing cholangitis: K-ras mutations and Tp53 dysfunction are implicated in the neoplastic development. Journal of Hepatology, 32(3), 374-380. https://doi.org/10.1016/S0168-8278(00)80386-4
Rashid A. Cellular and molecular biology of biliary tract cancer. Surg. Oncol. Clin.N.A.2002.Oct;11(4):995? 1009. https://doi.org/10.1016/S1055-3207(02)00042-X
Hahn SA, Kem SE. Molecular genetics of exocrine pancreatic neoplasms. Surg Clin North Am, 75 (1995), pp. 857-69 https://doi.org/10.1016/S0039-6109(16)46732-0
Hruban RH, Iacrobuzio-Donahue C, Wilentz RE. Molecular pathology of pancreatic cancer. Cancer J, 7 (2001), pp. 251-62
Hilgers W, Rosty C, Hahn SA. Molecular pathogenesis of pancreatic cancer Hematol Oncol Clin North Am, 16 (2002), pp. 17-35. https://doi.org/10.1016/S0889-8588(01)00005-3
Barton CM, Staddon SL, Hughes CM. Abnormalities of p53 tumor suppressor gene in human pancreatic cancer. Br J Cancer, 64 (1991), pp. 1076-85 https://doi.org/10.1038/bjc.1991.467
Suto T, Sugai T, Nakamura S, Funato O, Nitta H, Sasaki R, Kanno S, Saito K (1998) Assessment of the expression of p53, MIB-1 (Ki-67 antigen), and argyrophilic nucleolar organizer regions in carcinoma of the extrahepatic bile duct. Cancer 82:86- 95. https://doi.org/10.1002/(SICI)1097-0142(19980101)82:1<86::AID-CNCR10>3.0.CO;2-9
Tomono H, Nimura Y, Aono K, Nakashima I, Iwamoto T, Nakashima N (1996) Point mutations of the c-Ki-ras gene in carcinoma and atypical epithelium associated with congenital biliary dilatation. Am J Gastroenterol 91:1211-1214
Weismüller, T. J., Wedemeyer, J., Kubicka, S., Strassburg, C. P., & Manns, M. P. (2008). The challenges in primary sclerosing cholangitis - Aetiopathogenesis, autoimmunity, management and malignancy. Journal of Hepatology, 48, S38-S57. https://doi.org/10.1016/j.jhep.2008.01.020
Kiba T, Tsuda H, Pairojkul C, Inoue S, Sugimura T, Hirohashi S. Mutations of the p53 tumor suppressor gene and the ras gene family in intrahepatic cholangiocellular carcinomas in Japan and Thailand. Mol Carcinog 1993; 8: 312-S. https://doi.org/10.1002/mc.2940080415
Nadal T., O' Callaghan A., Caturla J., Mercadé T., Molecular characterization of advanced bile duct tumors and identification of potential predictive biomarkers of response to new therapeutic targets.University of Barcelona.2019
Cheng Q, Luo X, Zhang B, Jiang X, Yi B,Wu M.et al. Carcinoma distal de los conductos biliares: factores pronósticos después de la cirugía radical. Ann. Sug. Oncol. 2007 Mar;14(3):1212-1219. https://doi.org/10.1245/s10434-006-9260-0
Ohashi K, Nakajima Y, Kanehiro H, Tsutsumi M, Taki J, Aomatsu Y, Yoshimura A, Ko S, Kin T, Yagura K, Konishi Y, Nakano H (1995) Ki-ras mutations and p53 protein expression in intrahepatic cholangiocarcinomas: relation to gross tumor morphology. Gastroenterology 109:1612-1617. https://doi.org/10.1016/0016-5085(95)90650-9
Ahrendt, S. A., Rashid, A., Chow, J. T., Eisenberger, C. F., Pitt, H. A., & Sidransky, D. (2000). p53 overexpression and K- ras gene mutations in primary sclerosing cholangitis-associated biliary tract cancer. Journal of Hepato-BiliaryPancreatic Surgery, 7(4), 426-431. https://doi.org/10.1007/s005340070039
Diamantis I, Karamitopoulou E, Perentes E, Zimmerman A (1995) p53 protein immunoreactivity in extrahepatic bile duct and gallbladder cancer: correlation with tumor grade and survival. Hepatology 22:774-779 https://doi.org/10.1002/hep.1840220313
Teh M, Wee A, Raju GC (1994) An immunohistochemical study of p53 protein in gallbladder and extrahepatic bile duct/ampullary carcinoma. Cancer 74:1542-1545 https://doi.org/10.1002/1097-0142(19940901)74:5<1542::AID-CNCR2820740508>3.0.CO;2-U
Washington K, Gottfried MR (1996) Expession of p53 in adenocarcinoma of the gallbladder and bile ducts. Liver 16:99- 104. https://doi.org/10.1111/j.1600-0676.1996.tb00712.x
Tannapfel A, Sommerer F, Benicke M, Katalinik A, Uhlmann D, Witzigmann H, Hauss J, Wittekind C. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut.2003. May;52(5):706? 712. https://doi.org/10.1136/gut.52.5.706
Simbolo M, Razzan T, Ruimenete L, et al. Multigene mtational profiling of colangiocarcinomas identifies actionable molecular subgroups. Oncotarget 2014, 5: 2839-2852. https://doi.org/10.18632/oncotarget.1943
Sia D, Losie B, Moeni L, Cabellos L, et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLNI fusion and RAF mutations in intrahepatic cholangiocarcinoma. Nat Commun 2015; 6:6087-6098. https://doi.org/10.1038/ncomms7087
Borger DR, Tanabe KK, Fan KC, Lopez HU, et al. Frequent mutation of isocitrate dehydrogenase IDN 1 and IDH 2 en cholangiocarcinoma identified through broad- based tumor genotyping. Oncologist 2012; 17:72-79. https://doi.org/10.1634/theoncologist.2011-0386
Borger DR, Zhu AX. IDH mutations: new genetic signatures in cholangiocarcinoma and therapeutic implications. Expert Rev Anticancer Ther 2012; 12:543-546. https://doi.org/10.1586/era.12.32
Grassian AR, Pagliarini R, Chiang DY. Mutations of isocitrate dehydrogenase 1 and 2 in intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol 2014; 30:295-302. https://doi.org/10.1097/MOG.0000000000000050
Ang C. Role of the fibroblast growth factor receptor axis I cholangiocarcinoma. J gastroenterol Hepatol 2015; 30:1116-1122. https://doi.org/10.1111/jgh.12916
Hierro C, Rodon J, Tabernero J. Fibroblast growth factor (FGF) receptor/FGF inhibitors; novel targets and strategies for optimization of response of solid tumors. Semin Oncol 2015; 42:801-819. https://doi.org/10.1053/j.seminoncol.2015.09.027
Wu YM, Su F, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 2013; 3:636- 647. https://doi.org/10.1158/2159-8290.CD-13-0050
Arai Y, Totoki Y, Hosoda F, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangocarcinoma. Hepatology 2014; 59: 1427-1434. https://doi.org/10.1002/hep.26890
Narong S, Leelawat K, Basic fibroblast growth factor receptor induces in sholangiocarcinoma cell migration voa activation Mek 1-2 pathway. Oncol Lett 2011; 2:821-825. https://doi.org/10.3892/ol.2011.333
Moeini A, Sia, Bardesy M, Mazzaferro V. Molecular pathogenesis and targeted therapies of intrahepatic cholangiocarcinoma. Clin Cancer Res 2015; 22:291-300. https://doi.org/10.1158/1078-0432.CCR-14-3296
Jiao Y, Pawlik T, Anders RA, Selaru FM, et al, Exone sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinoma. Nat Gener 2013; 45:1470-1473. https://doi.org/10.1038/ng.2813
Lukas J, Parry D, Aagaard L y col. Inhibición del ciclo celular dependiente de proteínas de retinoblastoma por el supresor de tumores p16. Naturaleza. 1995; 375: 503-506. https://doi.org/10.1038/375503a0
Goldstein AM, Fraser MC, Struewing JP y col. Mayor riesgo de cáncer de páncreas en familias propensas al melanoma con mutaciones p16INK4. New Engl J Med. 1995; 333: 970-974. https://doi.org/10.1056/NEJM199510123331504
Bartsch DK, Sina-Frey M, Lang S y col. Mutaciones de la línea germinal CDKN2A en el cáncer de páncreas familiar. Ann Surg. 2002; 236: 730-737 https://doi.org/10.1097/00000658-200212000-00005
Lynch HT, Brand RE, Hogg D, et al. Variación fenotípica en ocho familias con tendencia a carcinoma de páncreas y melanoma de páncreas atípico familiar con mutación de la línea germinal CDKN2A extendida: el síndrome de carcinoma de páncreas con melanoma de páncreas atípico familiar. Cáncer. 2002; 94: 84-96
Schutte M, Hruban RH, Geradts J, et al. Abrogación de la vía supresora de tumores Rb / p16 en prácticamente todos los carcinomas de páncreas. Cancer Res. 1997; 57: 3126-3130
A.K. El-Naggar, S. Lai, G. Clayman, J.K. Lee, M.A. Luna, H. Goepfert, J.G. Batsakis. Methylation, a major mechanism of p16/CDKN2 gene inactivation in head and neck squamous carcinoma. Am. J. Pathol., 151 (1997), pp. 1767-1774.
Jiao L., Zhu J., Hassan MM., Evans DB., Abbruzzese J., et al. K-ras Mutation and p16 and Preproenkephalin Promoter Hypermethylation in Plasma DNA of Pancreatic Cancer Patients. Pancreas,2007; 34(1), 55-62. https://doi.org/10.1097/01.mpa.0000246665.68869.d4
P.S. Moore, B. Sipos, S. Orlandini, C. Sorio, F.X. Real, N.R. Lemoine, T. Gress, C. Bassi, G. Kloppel, H. Kalthoff, H. Ungefroren, M. Lohr, A. Scarpa.Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.Virchows Arch., 439 (2001), pp. 798-802 https://doi.org/10.1007/s004280100474
E.E. Salo-Mullen, E.M. O'reilly, D.P. Kelsen, A.M. Ashraf, M.A. Lowery, K.H. Yu,D.L. Reidy, A.S. Epstein, A. Lincoln, A. Saldia, L.M. Jacobs, R. Rau-Murthy, L. Zhang, R.C. Kurtz, L. Saltz, K. Offit, M.E. Robson, Z.K. Stadler. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer (2015) https://doi.org/10.1002/cncr.29664
Blackford A, Serrano OK, Wolfgang CL, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15(14):4674-4679. https://doi.org/10.1158/1078-0432.CCR-09-0227
Hosoda W, Chianchiano P, Griffin JF, et al. Genetic analyses of isolated highgrade pancreatic intraepithelial neoplasia (HG-PanIN) reveal paucity of alterations in TP53 and SMAD4. J Pathol. 2017;242(1):16-23. https://doi.org/10.1002/path.4884
Yachida S, White CM, Naito Y, et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin Cancer Res. 2012;18(22):6339-6347. https://doi.org/10.1158/1078-0432.CCR-12-1215
Wilentz RE, Su GH, Dai JL, et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas: a new marker of DPC4 inactivation. Am J Pathol. 2000;156(1):37-43 https://doi.org/10.1016/S0002-9440(10)64703-7
Singh P, Srinivasan R, Wig JD. SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas.
Biankin AV, Morey AL, Lee C-S, et al. DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma. J Clin Oncol. 2002;20(23):4531-4542. https://doi.org/10.1200/JCO.2002.12.063
Gu, Y., Ji, Y., Jiang, H., & Qiu, G. Clinical Effect of Driver Mutations of KRAS, CDKN2A/P16, TP53, and SMAD4 in Pancreatic Cancer: A MetaAnalysis. Genetic Testing and Molecular Biomarkers, 2020; 24(12), 777-788. https://doi.org/10.1089/gtmb.2020.0078
Hruban RH, Iacrobuzio-Donahue C, Wilentz RE. Molecular pathology of pancreatic cancer. Cancer J, 7 (2001), pp. 251-62
Hilgers W, Rosty C, Hahn SA. Molecular pathogenesis of pancreatic cancer Hematol Oncol Clin North Am, 16 (2002), pp. 17-35 https://doi.org/10.1016/S0889-8588(01)00005-3
Bardeesy N, De Pinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer, 2 (2002), pp. 897-909 https://doi.org/10.1038/nrc949
Ghimenti C, Tannergard P, Wahlberg S. Microsatellite instability and mismatch repair gene inactivation in sporadic pancreatic and colon tumors. Br J Cancer, 80 (1999), pp. 11-21 https://doi.org/10.1038/sj.bjc.6690314
Yamamoto H, Itoh F, Nakamura H, Fukushima H, Sasaki S, Perucho M, et al. Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res, 61 (2001), pp. 3139-44.
Ruiz Tobar J., Martín-Pérez E., Fernández-Contreras M., RegueroCallejas M., Gamallo-Amat C., Identificación de factores pronóstico en el cáncer de páncreas. Cir Cir 2011; 79:338-348
Morganti AG, Forni F, Macchia G, Valentini V, Smaniotto D, Trodella L, et al. Chemoradiation of unresectable pancreatic carcinoma: impact of pretreatment haemoglobin levels on patterns of failure. Strahlenther Onkol 2003; 179:87-92. https://doi.org/10.1007/s00066-003-1043-y
Faloppi, L. et al. The correlation between LDH serum levels and clinical outcome in advanced biliary tract cancer patients treated with first line chemotherapy. Sci. Rep. 6, 24136 https://doi.org/10.1038/srep24136