Impacto de la infección con Trypanosoma cruzi y la nutrición sobre la expresión de receptores innatos y parámetros inmuno-metabólicos en un modelo de obesidad
DOI:
https://doi.org/10.22529/Palabras clave:
obesidad, patologías inflamatorias, tejido adiposo, chagasResumen
La obesidad es una epidemia en curso a nivel mundial, reconocida como una enfermedad inflamatoria de grado bajo, caracterizada por concentraciones incrementadas de un amplio panel de citocinas, quimiocinas y proteínas de fase aguda en circulación. Esta inflamación favorece el desarrollo de complicaciones metabólicas y cardiovasculares e involucra la activación de células inmunes, principalmente macrófagos (MФ) y una acumulación excesiva de estas células en el tejido adiposo (TA). Diversos estudios demostrando el impacto negativo del exceso de adiposidad en la función inmune han sido realizados usando modelos artificiales de obesidad, basados en la administración de dietas con alto contenido lipídico o en modelos genéticamente modificados, dificultando la extrapolación a lo observado en el campo clínico. El TA constituye un reservorio del protozoo Trypanosoma cruzi, agente etiológico de la enfermedad de Chagas, endémica en Latinoamérica y emergente a nivel mundial. Es conocida la desregulación metabólica de glúcidos y lípidos que el parásito genera en el huésped; sin embargo, su influencia en un contexto nutricional excesivo, ha sido aún poco abordada. En nuestro trabajo, desarrollamos un modelo de obesidad inducido por dieta moderada en grasas (14%), fructosa (5%) y estreptozotocina (8mg/Kg) en ratones machos C57BL/6 y analizamos el impacto de la infección con T. cruzi (500 tripomastigotes, cepa Tulahuen) y la nutrición sobre la respuesta metabólica e inflamatoria, las alteraciones cardiovasculares y hepáticas y el compromiso inmune del TA visceral, hasta las 24 semanas. Observamos incrementos en los parámetros morfométricos y metabólicos: hiperglucemia, insulino resistencia, dislipemia, perfil lipoproteico pro-aterogénico, esteatosis hepática y aumento de lípidos en corazón y aorta, así como, MФ infiltrantes en TA y aumento sistémico de IL-6 y leptina. El parásito disminuyó el contenido lipídico total, a expensas de un aumento del daño funcional (esteatohepatitis, TA disfuncional), metabólico (diabetes y perfil pro-aterogénico) e inflamatorio local (infiltrado celular) y sistémico (IL-6, TNF-α, MCP1, leptina). En conclusión, la infección parasitaria disminuye las alteraciones morfométricas asociadas a la obesidad, pero induce una desregulación funcional metabólica merced a la exacerbada respuesta inflamatoria generada, sugiriendo al T. cruzi como un factor de riesgo potencial de sus co-morbilidades inflamatorias, tales como, la ateroesclerosis y la esteatohepatitis.Descargas
Referencias
Desruisseaux MS, Nagajyothi, Trujillo ME, Tanowitz HB and Scherer PE. Adipocyte, adipose tissue, and infectious disease. Infect Immun. 2007; 75(3):1066-1078. https://doi.org/10.1128/IAI.01455-06
Schaffler A and Scholmerich J. Innate immunity and adipose tissue biology. Trends in immunology. 2010; 31(6):228-235. https://doi.org/10.1016/j.it.2010.03.001
Veldhoen M and Veiga-Fernandes H. Feeding immunity: skepticism, delicacies and delights. Nature immunology. 2015; 16(3):215-219. https://doi.org/10.1038/ni.3100
WHO (2015). Obesity and overweight. Factsheet 311.
Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR and Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. The American journal of clinical nutrition. 2000; 72(3):694-701. https://doi.org/10.1093/ajcn/72.3.694
Chan DC, Watts GF, Barrett PH and Burke V. Waist circumference, waist-to-hip ratio and body mass index as predictors of adipose tissue compartments in men. QJM : monthly journal of the Association of Physicians. 2003; 96(6):441-447. https://doi.org/10.1093/qjmed/hcg069
Janssen I, Heymsfield SB, Allison DB, Kotler DP and Ross R. Body mass index and waist circumference independently contribute to the prediction of nonabdominal, abdominal subcutaneous, and visceral fat. The American journal of clinical nutrition. 2002; 75(4):683- 688. https://doi.org/10.1093/ajcn/75.4.683
Piya MK, McTernan PG and Kumar S. Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. The Journal of endocrinology. 2013; 216(1):T1-T15. https://doi.org/10.1530/JOE-12-0498
Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB, Sr. and O'Donnell CJ. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007; 116(1):39-48. https://doi.org/10.1161/CIRCULATIONAHA.106.675355
Liu J, Fox CS, Hickson DA, May WD, Hairston KG, Carr JJ and Taylor HA. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. The Journal of clinical endocrinology and metabolism. 2010; 95(12):5419-5426. https://doi.org/10.1210/jc.2010-1378
Wellen KE and Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005; 115(5):1111-1119. https://doi.org/10.1172/JCI25102
Tateya S, Kim F and Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013; 4:93. https://doi.org/10.3389/fendo.2013.00093
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World journal of diabetes. 2015; 6(3):456-480. https://doi.org/10.4239/wjd.v6.i3.456
Ouchi N, Parker JL, Lugus JJ and Walsh K. Adipokines in inflammation and metabolic disease. Nature reviews Immunology. 2011; 11(2):85-97. https://doi.org/10.1038/nri2921
Dandona P, Chaudhuri A, Ghanim H and Mohanty P. Proinflammatory effects of glucose and anti-inflammatory effect of insulin: relevance to cardiovascular disease. The American journal of cardiology. 2007; 99(4A):15B-26B. https://doi.org/10.1016/j.amjcard.2006.11.003
Houstis N, Rosen ED and Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006; 440(7086):944-948. https://doi.org/10.1038/nature04634
Singh R and Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. International journal of cell biology. 2012; 2012:282041. https://doi.org/10.1155/2012/282041
Hotamisligil GS, Shargill NS and Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993; 259(5091):87-91. https://doi.org/10.1126/science.7678183
Kalupahana NS, Moustaid-Moussa N and Claycombe KJ. Immunity as a link between obesity and insulin resistance. Molecular aspects of medicine. 2012; 33(1):26-34. https://doi.org/10.1016/j.mam.2011.10.011
Fernandez-Real JM and Pickup JC. Innate immunity, insulin resistance and type 2 diabetes. Diabetologia. 2012; 55(2):273-278. https://doi.org/10.1007/s00125-011-2387-y
Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J, Hawn TR, Raines EW and Schwartz MW. Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circulation research. 2007; 100(11):1589-1596. https://doi.org/10.1161/CIRCRESAHA.106.142851
Kim JK. Endothelial nuclear factor kappaB in obesity and aging: is endothelial nuclear factor kappaB a master regulator of inflammation and insulin resistance? Circulation. 2012; 125(9):1081-1083. https://doi.org/10.1161/CIRCULATIONAHA.111.090134
Stojsavljevic S, Gomercic Palcic M, Virovic Jukic L, Smircic Duvnjak L and Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World journal of gastroenterology : WJG. 2014; 20(48):18070-18091. https://doi.org/10.3748/wjg.v20.i48.18070
Vos MB and Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology. 2013; 57(6):2525-2531. https://doi.org/10.1002/hep.26299
Medici V, Ali MR, Seo S, Aoki CA, Rossaro L, Kim K, Fuller WD, Vidovszky TJ, Smith W, Jiang JX, Maganti K, Havel PJ, Kamboj A, Ramsamooj R and Torok NJ. Increased soluble leptin receptor levels in morbidly obese patients with insulin resistance and nonalcoholic fatty liver disease. Obesity. 2010; 18(12):2268-2273. 132 https://doi.org/10.1038/oby.2010.95
Zhang L, Song H, Ge Y, Ji G and Yao Z. Temporal relationship between diet-induced steatosis and onset of insulin/leptin resistance in male wistar rats. PloS one. 2015; 10(2):e0117008. https://doi.org/10.1371/journal.pone.0117008
Fishman S, Muzumdar RH, Atzmon G, Ma X, Yang X, Einstein FH and Barzilai N. Resistance to leptin action is the major determinant of hepatic triglyceride accumulation in vivo. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2007; 21(1):53-60. https://doi.org/10.1096/fj.06-6557com
Basciano H, Federico L and Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition & metabolism. 2005; 2(1):5. https://doi.org/10.1186/1743-7075-2-5
Tappy L and Le KA. Does fructose consumption contribute to non-alcoholic fatty liver disease? Clinics and research in hepatology and gastroenterology. 2012; 36(6):554-560. https://doi.org/10.1016/j.clinre.2012.06.005
Lonardo A, Lombardini S, Ricchi M, Scaglioni F and Loria P. Review article: hepatic steatosis and insulin resistance. Alimentary pharmacology & therapeutics. 2005; 22 Suppl 2:64-70. https://doi.org/10.1111/j.1365-2036.2005.02600.x
Attie AD and Scherer PE. Adipocyte metabolism and obesity. Journal of lipid research. 2009; 50 Suppl:S395-399.
https://doi.org/10.1194/jlr.R800057-JLR200
Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999; 340(2):115- 126. https://doi.org/10.1056/NEJM199901143400207
Erridge C. The roles of Toll-like receptors in atherosclerosis. Journal of innate immunity. 2009; 1(4):340-349. https://doi.org/10.1159/000191413
Gustafson B. Adipose tissue, inflammation and atherosclerosis. Journal of atherosclerosis and thrombosis. 2010; 17(4):332-341. https://doi.org/10.5551/jat.3939
Sivapalaratnam S, Motazacker MM, Maiwald S, Hovingh GK, Kastelein JJ, Levi M, Trip MD and Dallinga-Thie GM. Genome-wide association studies in atherosclerosis. Current atherosclerosis reports. 2011; 13(3):225-232. https://doi.org/10.1007/s11883-011-0173-4
Noyes AM, Dua K, Devadoss R and Chhabra L. Cardiac adipose tissue and its relationship to diabetes mellitus and cardiovascular disease. World journal of diabetes. 2014; 5(6):868-876. https://doi.org/10.4239/wjd.v5.i6.868
Sunnemark D, Harris RA, Frostegard J and Orn A. Induction of early atherosclerosis in CBA/J mice by combination of Trypanosoma cruzi infection and a high cholesterol diet. Atherosclerosis. 2000; 153(2):273-282. https://doi.org/10.1016/S0021-9150(00)00406-8
Lehr HA, Sagban TA, Ihling C, Zahringer U, Hungerer KD, Blumrich M, Reifenberg K and Bhakdi S. Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation. 2001; 104(8):914-920. 133 https://doi.org/10.1161/hc3401.093153
Mathieu P, Pibarot P and Despres JP. Metabolic syndrome: the danger signal in atherosclerosis. Vascular health and risk management. 2006; 2(3):285-302. https://doi.org/10.2147/vhrm.2006.2.3.285
Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2004; 24(1):23-28. https://doi.org/10.1161/01.ATV.0000097769.47306.12
Ouimet M, Franklin V, Mak E, Liao X, Tabas I and Marcel YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell metabolism. 2011; 13(6):655-667. https://doi.org/10.1016/j.cmet.2011.03.023
Falk E. Pathogenesis of atherosclerosis. Journal of the American College of Cardiology. 2006; 47(8 Suppl):C7-12. https://doi.org/10.1016/j.jacc.2005.09.068
Saely CH, Geiger K and Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology. 2012; 58(1):15-23. https://doi.org/10.1159/000321319
Fernandez M, Acuna MJ, Reyes M, Olivares D, Hirsch S, Bunout D and de la Maza MP. Proliferation and differentiation of human adipocyte precursor cells: differences between the preperitoneal and subcutaneous compartments. Journal of cellular biochemistry. 2010; 111(3):659-664. https://doi.org/10.1002/jcb.22753
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L and Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994; 372(6505):425- 432. https://doi.org/10.1038/372425a0
Ahima RS. Adipose tissue as an endocrine organ. Obesity. 2006; 14 Suppl 5:242S249S. https://doi.org/10.1038/oby.2006.317
Han JM and Levings MK. Immune regulation in obesity-associated adipose inflammation. Journal of immunology. 2013; 191(2):527-532. https://doi.org/10.4049/jimmunol.1301035
Wen JJ, Nagajyothi F, Machado FS, Weiss LM, Scherer PE, Tanowitz HB and Garg NJ. Markers of oxidative stress in adipose tissue during Trypanosoma cruzi infection. Parasitology research. 2014; 113(9):3159-3165. https://doi.org/10.1007/s00436-014-3977-7
Lumeng CN, Bodzin JL and Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007; 117(1):175-184. https://doi.org/10.1172/JCI29881
Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, Blin-Wakkach C, Anty R, Iannelli A, Gugenheim J, Tran A, Bouloumie A, Gual P and Wakkach A. Identification of adipose tissue dendritic cells correlated with obesity-associated insulinresistance and inducing Th17 responses in mice and patients. Diabetes. 2012; 61(9):2238- 2247. 134 51. https://doi.org/10.2337/db11-1274
Stefanovic-Racic M, Yang X, Turner MS, Mantell BS, Stolz DB, Sumpter TL, Sipula IJ, Dedousis N, Scott DK, Morel PA, Thomson AW and O'Doherty RM. Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c+ cells in adipose tissue and liver. Diabetes. 2012; 61(9):2330-2339. https://doi.org/10.2337/db11-1523
Liu J, Divoux A, Sun J, Zhang J, Clement K, Glickman JN, Sukhova GK, Wolters PJ, Du J, Gorgun CZ, Doria A, Libby P, Blumberg RS, Kahn BB, Hotamisligil GS and Shi GP. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature medicine. 2009; 15(8):940-945. https://doi.org/10.1038/nm.1994
Elgazar-Carmon V, Rudich A, Hadad N and Levy R. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. Journal of lipid research. 2008; 49(9):1894-1903. https://doi.org/10.1194/jlr.M800132-JLR200
Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS, Hunt CR and Spiegelman BM. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science. 1987; 237(4813):402-405. https://doi.org/10.1126/science.3299705
Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K, Tokunaga K and Matsuzawa Y. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nature medicine. 1996; 2(7):800-803. https://doi.org/10.1038/nm0796-800
Hu E, Liang P and Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. The Journal of biological chemistry. 1996; 271(18):10697-10703. https://doi.org/10.1074/jbc.271.18.10697
Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y and Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochemical and biophysical research communications. 1996; 221(2):286-289. https://doi.org/10.1006/bbrc.1996.0587
Scherer PE, Williams S, Fogliano M, Baldini G and Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. The Journal of biological chemistry. 1995; 270(45):26746-26749. https://doi.org/10.1074/jbc.270.45.26746
Friedman JM and Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998; 395(6704):763-770. https://doi.org/10.1038/27376
Dalskov SM, Ritz C, Larnkjaer A, Damsgaard CT, Petersen RA, Sorensen LB, Ong KK, Astrup A, Molgaard C and Michaelsen KF. The role of leptin and other hormones related to bone metabolism and appetite regulation as determinants of gain in body fat and fat-free mass in 8-11-year-old children. The Journal of clinical endocrinology and metabolism. 2015; 100(3):1196-1205. https://doi.org/10.1210/jc.2014-3706
El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C and Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. The Journal of clinical investigation. 2000; 105(12):1827-1832. https://doi.org/10.1172/JCI9842
Argente-Arizon P, Freire-Regatillo A, Argente J and Chowen JA. Role of non-neuronal cells in body weight and appetite control. Frontiers in endocrinology. 2015; 6:42. https://doi.org/10.3389/fendo.2015.00042
Zhang X, Zhang G, Zhang H, Karin M, Bai H and Cai D. Hypothalamic IKKbeta/NFkappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008; 135(1):61-73. https://doi.org/10.1016/j.cell.2008.07.043
Denroche HC, Huynh FK and Kieffer TJ. The role of leptin in glucose homeostasis. Journal of diabetes investigation. 2012; 3(2):115-129. https://doi.org/10.1111/j.2040-1124.2012.00203.x
Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, Hamnvik OP and Koniaris A. Leptin in human physiology and pathophysiology. American journal of physiology Endocrinology and metabolism. 2011; 301(4):E567-584. https://doi.org/10.1152/ajpendo.00315.2011
Thangaraju P, Chakrabarti A, Banerjee D, Hota D, Tamilselvan, Bhatia A and Gupta A. Dual blockade of Renin Angiotensin system in reducing the early changes of diabetic retinopathy and nephropathy in a diabetic rat model. North American journal of medical sciences. 2014; 6(12):625-632. https://doi.org/10.4103/1947-2714.147978
Chang CC, Wu MJ, Yang JY, Camarillo IG and Chang CJ. Leptin-STAT3-G9a Signaling Promotes Obesity-Mediated Breast Cancer Progression. Cancer research. 2015. https://doi.org/10.1158/0008-5472.CAN-14-3076
Anfossi G, Russo I, Doronzo G, Pomero A and Trovati M. Adipocytokines in atherothrombosis: focus on platelets and vascular smooth muscle cells. Mediators of inflammation. 2010; 2010:174341. https://doi.org/10.1155/2010/174341
Uysal KT, Wiesbrock SM, Marino MW and Hotamisligil GS. Protection from obesityinduced insulin resistance in mice lacking TNF-alpha function. Nature. 1997; 389(6651):610- 614. https://doi.org/10.1038/39335
Chen DY, Chen YM, Hsieh TY, Hsieh CW, Lin CC and Lan JL. Significant effects of biologic therapy on lipid profiles and insulin resistance in patients with rheumatoid arthritis. Arthritis research & therapy. 2015; 17(1):52. https://doi.org/10.1186/s13075-015-0559-8
Hotamisligil GS, Budavari A, Murray D and Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. The Journal of clinical investigation. 1994; 94(4):1543-1549. https://doi.org/10.1172/JCI117495
Hivert MF, Sullivan LM, Fox CS, Nathan DM, D'Agostino RB, Sr., Wilson PW and Meigs JB. Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. The Journal of clinical endocrinology and metabolism. 2008; 93(8):3165-3172. https://doi.org/10.1210/jc.2008-0425
Lo J, Bernstein LE, Canavan B, Torriani M, Jackson MB, Ahima RS and Grinspoon SK. Effects of TNF-alpha neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. American journal of physiology Endocrinology and metabolism. 2007; 293(1):E102-109. https://doi.org/10.1152/ajpendo.00089.2007
Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, Khor VK, Ahima RS and Grinspoon SK. TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. The Journal of clinical endocrinology and metabolism. 2011; 96(1):E146-150. https://doi.org/10.1210/jc.2010-1170
Skoog T, Dichtl W, Boquist S, Skoglund-Andersson C, Karpe F, Tang R, Bond MG, de Faire U, Nilsson J, Eriksson P and Hamsten A. Plasma tumour necrosis factor-alpha and early carotid atherosclerosis in healthy middle-aged men. European heart journal. 2002; 23(5):376-383. https://doi.org/10.1053/euhj.2001.2805
Lubrano V and Balzan S. Consolidated and emerging inflammatory markers in coronary artery disease. World journal of experimental medicine. 2015; 5(1):21-32. https://doi.org/10.5493/wjem.v5.i1.21
Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S and Braunwald E. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation. 2000; 101(18):2149-2153. https://doi.org/10.1161/01.CIR.101.18.2149
Yoshimura T, Yuhki N, Moore SK, Appella E, Lerman MI and Leonard EJ. Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS letters. 1989; 244(2):487-493. https://doi.org/10.1016/0014-5793(89)80590-3
Ajuebor MN, Flower RJ, Hannon R, Christie M, Bowers K, Verity A and Perretti M. Endogenous monocyte chemoattractant protein-1 recruits monocytes in the zymosan peritonitis model. Journal of leukocyte biology. 1998; 63(1):108-116. https://doi.org/10.1002/jlb.63.1.108
Namiki M, Kawashima S, Yamashita T, Ozaki M, Hirase T, Ishida T, Inoue N, Hirata K, Matsukawa A, Morishita R, Kaneda Y and Yokoyama M. Local overexpression of monocyte chemoattractant protein-1 at vessel wall induces infiltration of macrophages and formation of atherosclerotic lesion: synergism with hypercholesterolemia. Arteriosclerosis, thrombosis, and vascular biology. 2002; 22(1):115-120. https://doi.org/10.1161/hq0102.102278
Balsan GA, Vieira JL, Oliveira AM and Portal VL. Relationship between adiponectin, obesity and insulin resistance. Revista da Associacao Medica Brasileira. 2015; 61(1):72-80. https://doi.org/10.1590/1806-9282.61.01.072
Kandasamy AD, Sung MM, Boisvenue JJ, Barr AJ and Dyck JR. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice. Nutrition & diabetes. 2012; 2:e45. https://doi.org/10.1038/nutd.2012.18
Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, Kaneko K, Kobayashi M, Iwane A, Sasako T, Okazaki Y, Ohsugi M, Takamoto I, Yamashita S, Asahara H, Akira S, Kasuga M, et al. Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell metabolism. 2011; 13(4):401-412. https://doi.org/10.1016/j.cmet.2011.02.010
Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, Okamoto Y, Ohashi K, Nagaretani H, Kishida K, Nishizawa H, Maeda N, Kobayashi H, Hiraoka H and Matsuzawa Y. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003; 107(5):671-674. https://doi.org/10.1161/01.CIR.0000055188.83694.B3
Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, Pedersen AA, Kalthoff C, Tullin S, Sams A, Summer R and Walsh K. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. The Journal of biological chemistry. 2010; 285(9):6153-6160. https://doi.org/10.1074/jbc.M109.088708
Kobashi C, Urakaze M, Kishida M, Kibayashi E, Kobayashi H, Kihara S, Funahashi T, Takata M, Temaru R, Sato A, Yamazaki K, Nakamura N and Kobayashi M. Adiponectin inhibits endothelial synthesis of interleukin-8. Circulation research. 2005; 97(12):1245-1252. https://doi.org/10.1161/01.RES.0000194328.57164.36
Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T and Matsuzawa Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NFkappaB signaling through a cAMP-dependent pathway. Circulation. 2000; 102(11):1296- 1301. https://doi.org/10.1161/01.CIR.102.11.1296
Fantuzzi G. Adiponectin and inflammation: consensus and controversy. The Journal of allergy and clinical immunology. 2008; 121(2):326-330. https://doi.org/10.1016/j.jaci.2007.10.018
Lee BC and Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochimica et biophysica acta. 2014; 1842(3):446-462. https://doi.org/10.1016/j.bbadis.2013.05.017
Wronska A and Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta physiologica. 2012; 205(2):194-208. https://doi.org/10.1111/j.1748-1716.2012.02409.x
Lin Y, Lee H, Berg AH, Lisanti MP, Shapiro L and Scherer PE. The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. The Journal of biological chemistry. 2000; 275(32):24255- 24263. https://doi.org/10.1074/jbc.M002137200
Schaeffler A, Gross P, Buettner R, Bollheimer C, Buechler C, Neumeier M, Kopp A, Schoelmerich J and Falk W. Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology. 2009; 126(2):233-245. https://doi.org/10.1111/j.1365-2567.2008.02892.x
Davis JE, Gabler NK, Walker-Daniels J and Spurlock ME. The c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and tolllike receptor 2 and 4 ligands in 3T3-L1 adipocytes. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2009; 41(7):523-530. https://doi.org/10.1055/s-0029-1202852
Melo RC, D'Avila H, Wan HC, Bozza PT, Dvorak AM and Weller PF. Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 2011; 59(5):540-556. https://doi.org/10.1369/0022155411404073
Kusminski CM, Shetty S, Orci L, Unger RH and Scherer PE. Diabetes and apoptosis: lipotoxicity. Apoptosis : an international journal on programmed cell death. 2009; 14(12):1484-1495. https://doi.org/10.1007/s10495-009-0352-8
Brasaemle DL, Dolios G, Shapiro L and Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. The Journal of biological chemistry. 2004; 279(45):46835-46842. https://doi.org/10.1074/jbc.M409340200
Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M and Cinti S. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. Journal of lipid research. 2008; 49(7):1562-1568. https://doi.org/10.1194/jlr.M800019-JLR200
Kraakman MJ, Murphy AJ, Jandeleit-Dahm K and Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Frontiers in immunology. 2014; 5:470. https://doi.org/10.3389/fimmu.2014.00470
Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, Ohtsuka-Kowatari N, Kumagai K, Sakamoto K, Kobayashi M, Yamauchi T, Ueki K, Oishi Y, Nishimura S, Manabe I, Hashimoto H, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. The Journal of biological chemistry. 2006; 281(36):26602-26614. https://doi.org/10.1074/jbc.M601284200
Surmi BK and Hasty AH. The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vascular pharmacology. 2010; 52(1-2):27-36. https://doi.org/10.1016/j.vph.2009.12.004
Lumeng CN. Innate immune activation in obesity. Molecular aspects of medicine. 2013; 34(1):12-29. https://doi.org/10.1016/j.mam.2012.10.002
Lumeng CN, DelProposto JB, Westcott DJ and Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008; 57(12):3239-3246. https://doi.org/10.2337/db08-0872
Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, Tsuneyama K, Nagai Y, Takatsu K, Urakaze M, Kobayashi M and Tobe K. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes. 2009; 58(11):2574-2582. https://doi.org/10.2337/db08-1475
Shaul ME, Bennett G, Strissel KJ, Greenberg AS and Obin MS. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet--induced obesity in mice. Diabetes. 2010; 59(5):1171-1181. https://doi.org/10.2337/db09-1402
Ji Y, Sun S, Xia S, Yang L, Li X and Qi L. Short term high fat diet challenge promotes alternative macrophage polarization in adipose tissue via natural killer T cells and interleukin4. The Journal of biological chemistry. 2012; 287(29):24378-24386. https://doi.org/10.1074/jbc.M112.371807
Schaffler A, Scholmerich J and Salzberger B. Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs and CTRPs. Trends in immunology. 2007; 28(9):393- 399. https://doi.org/10.1016/j.it.2007.07.003
Schaffler A, Muller-Ladner U, Scholmerich J and Buchler C. Role of adipose tissue as an inflammatory organ in human diseases. Endocrine reviews. 2006; 27(5):449-467. https://doi.org/10.1210/er.2005-0022
Kanczkowski W, Ziegler CG, Zacharowski K and Bornstein SR. Toll-like receptors in endocrine disease and diabetes. Neuroimmunomodulation. 2008; 15(1):54-60. https://doi.org/10.1159/000135624
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H and Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of clinical investigation. 2006; 116(11):3015-3025. https://doi.org/10.1172/JCI28898
Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG and Olefsky JM. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. The Journal of biological chemistry. 2007; 282(48):35279- 35292. https://doi.org/10.1074/jbc.M706762200
Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Araujo EP, Vassallo J, Curi R, Velloso LA and Saad MJ. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007; 56(8):1986-1998. https://doi.org/10.2337/db06-1595
Saberi M, Woods NB, de Luca C, Schenk S, Lu JC, Bandyopadhyay G, Verma IM and Olefsky JM. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell metabolism. 2009; 10(5):419-429. https://doi.org/10.1016/j.cmet.2009.09.006
Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S, Kotani H, Yamaoka S, Miyake K, Aoe S, Kamei Y and Ogawa Y. Role of the Toll-like receptor 4/NFkappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arteriosclerosis, thrombosis, and vascular biology. 2007; 27(1):84-91. https://doi.org/10.1161/01.ATV.0000251608.09329.9a
Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM and Olefsky JM. GPR120 is an omega-3 fatty acid receptor mediating potent antiinflammatory and insulin-sensitizing effects. Cell. 2010; 142(5):687-698. https://doi.org/10.1016/j.cell.2010.07.041
Caricilli AM, Nascimento PH, Pauli JR, Tsukumo DM, Velloso LA, Carvalheira JB and Saad MJ. Inhibition of toll-like receptor 2 expression improves insulin sensitivity and signaling in muscle and white adipose tissue of mice fed a high-fat diet. The Journal of endocrinology. 2008; 199(3):399-406. https://doi.org/10.1677/JOE-08-0354
Kuo LH, Tsai PJ, Jiang MJ, Chuang YL, Yu L, Lai KT and Tsai YS. Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse. Diabetologia. 2011; 54(1):168-179. https://doi.org/10.1007/s00125-010-1931-5
Himes RW and Smith CW. Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2010; 24(3):731-739. https://doi.org/10.1096/fj.09-141929
Caricilli AM, Picardi PK, de Abreu LL, Ueno M, Prada PO, Ropelle ER, Hirabara SM, Castoldi A, Vieira P, Camara NO, Curi R, Carvalheira JB and Saad MJ. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS biology. 2011; 9(12):e1001212. https://doi.org/10.1371/journal.pbio.1001212
McGilvray ID, Serghides L, Kapus A, Rotstein OD and Kain KC. Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance. Blood. 2000; 96(9):3231-3240.
https://doi.org/10.1182/blood.V96.9.3231
Christiaens V, Van Hul M, Lijnen HR and Scroyen I. CD36 promotes adipocyte differentiation and adipogenesis. Biochimica et biophysica acta. 2012; 1820(7):949-956. https://doi.org/10.1016/j.bbagen.2012.04.001
Kennedy DJ, Kuchibhotla S, Westfall KM, Silverstein RL, Morton RE and Febbraio M. A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovascular research. 2011; 89(3):604-613. https://doi.org/10.1093/cvr/cvq360
Silverstein RL and Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Science signaling. 2009; 2(72):re3. https://doi.org/10.1126/scisignal.272re3
Hajri T, Han XX, Bonen A and Abumrad NA. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. The Journal of clinical investigation. 2002; 109(10):1381-1389. https://doi.org/10.1172/JCI0214596
Nicholls HT, Kowalski G, Kennedy DJ, Risis S, Zaffino LA, Watson N, Kanellakis P, Watt MJ, Bobik A, Bonen A, Febbraio M, Lancaster GI and Febbraio MA. Hematopoietic cellrestricted deletion of CD36 reduces high-fat diet-induced macrophage infiltration and improves insulin signaling in adipose tissue. Diabetes. 2011; 60(4):1100-1110. https://doi.org/10.2337/db10-1353
Moore KJ and Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arteriosclerosis, thrombosis, and vascular biology. 2006; 26(8):1702-1711. https://doi.org/10.1161/01.ATV.0000229218.97976.43
Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K and Silverstein RL. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. The Journal of clinical investigation. 2000; 105(8):1049-1056. https://doi.org/10.1172/JCI9259
Moore KJ, El Khoury J, Medeiros LA, Terada K, Geula C, Luster AD and Freeman MW. A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid. The Journal of biological chemistry. 2002; 277(49):47373-47379. https://doi.org/10.1074/jbc.M208788200
WHO (2010). Chagas Disease (American trypanosomiasis). Factsheet 340.
Schmunis GA and Yadon ZE. Chagas disease: a Latin American health problem becoming a world health problem. Acta tropica. 2010; 115(1-2):14-21. https://doi.org/10.1016/j.actatropica.2009.11.003
Machado FS, Dutra WO, Esper L, Gollob KJ, Teixeira MM, Factor SM, Weiss LM, Nagajyothi F, Tanowitz HB and Garg NJ. Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Seminars in immunopathology. 2012; 34(6):753-770. https://doi.org/10.1007/s00281-012-0351-7
de Souza W, de Carvalho TM and Barrias ES. Review on Trypanosoma cruzi: Host Cell Interaction. International journal of cell biology. 2010; 2010. https://doi.org/10.1155/2010/295394
Dutra WO, Menezes CA, Villani FN, da Costa GC, da Silveira AB, Reis D and Gollob KJ. Cellular and genetic mechanisms involved in the generation of protective and pathogenic immune responses in human Chagas disease. Memorias do Instituto Oswaldo Cruz. 2009; 104 Suppl 1:208-218. https://doi.org/10.1590/S0074-02762009000900027
Girones N, Cuervo H and Fresno M. Trypanosoma cruzi-induced molecular mimicry and Chagas' disease. Current topics in microbiology and immunology. 2005; 296:89-123. https://doi.org/10.1007/3-540-30791-5_6
Tarleton RL. Parasite persistence in the aetiology of Chagas disease. International journal for parasitology. 2001; 31(5-6):550-554. https://doi.org/10.1016/S0020-7519(01)00158-8
dosSantos V.M., daCunha S.F., Teixeiraetal V.P. Frequency of diabetes mellitus and hyperglycemia in chagasic and nonchagasic women. Revista da Sociedade Brasileira de Medicina Tropical. 1999; 32 (5), 489-96.
Oliveira LC, Juliano Y, Novo NF and Neves MM. Blood glucose and insulin response to intravenous glucose by patients with chronic Chagas' disease and alcoholism. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al]. 1993; 26(11):1187-1190.
Tanowitz HB, Amole B, Hewlett D and Wittner M. Trypanosoma cruzi infection in diabetic mice. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1988; 82(1):90-93. https://doi.org/10.1016/0035-9203(88)90272-6
Combs TP, Nagajyothi, Mukherjee S, de Almeida CJ, Jelicks LA, Schubert W, Lin Y, Jayabalan DS, Zhao D, Braunstein VL, Landskroner-Eiger S, Cordero A, Factor SM, Weiss LM, Lisanti MP, Tanowitz HB, et al. The adipocyte as an important target cell for Trypanosoma cruzi infection. The Journal of biological chemistry. 2005; 280(25):24085- 24094. https://doi.org/10.1074/jbc.M412802200
Nagajyothi F, Desruisseaux MS, Thiruvur N, Weiss LM, Braunstein VL, Albanese C, Teixeira MM, de Almeida CJ, Lisanti MP, Scherer PE and Tanowitz HB. Trypanosoma cruzi infection of cultured adipocytes results in an inflammatory phenotype. Obesity. 2008; 16(9):1992-1997. https://doi.org/10.1038/oby.2008.331
Ferreira AV, Segatto M, Menezes Z, Macedo AM, Gelape C, de Oliveira Andrade L, Nagajyothi F, Scherer PE, Teixeira MM and Tanowitz HB. Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease. Microbes and infection / Institut Pasteur. 2011; 13(12-13):1002-1005. https://doi.org/10.1016/j.micinf.2011.06.002
Maganto-Garcia E, Punzon C, Terhorst C and Fresno M. Rab5 activation by Toll-like receptor 2 is required for Trypanosoma cruzi internalization and replication in macrophages. Traffic. 2008; 9(8):1299-1315. https://doi.org/10.1111/j.1600-0854.2008.00760.x
Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO, Travassos LR, Smith JA, Golenbock DT and Gazzinelli RT. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. Journal of immunology. 2001; 167(1):416-423. https://doi.org/10.4049/jimmunol.167.1.416
Oliveira AC, Peixoto JR, de Arruda LB, Campos MA, Gazzinelli RT, Golenbock DT, Akira S, Previato JO, Mendonca-Previato L, Nobrega A and Bellio M. Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. Journal of immunology. 2004; 173(9):5688-5696. https://doi.org/10.4049/jimmunol.173.9.5688
Shoda LK, Kegerreis KA, Suarez CE, Roditi I, Corral RS, Bertot GM, Norimine J and Brown WC. DNA from protozoan parasites Babesia bovis, Trypanosoma cruzi, and T. brucei is mitogenic for B lymphocytes and stimulates macrophage expression of interleukin-12, tumor necrosis factor alpha, and nitric oxide. Infection and immunity. 2001; 69(4):2162-2171. https://doi.org/10.1128/IAI.69.4.2162-2171.2001
Bafica A, Santiago HC, Goldszmid R, Ropert C, Gazzinelli RT and Sher A. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. Journal of immunology. 2006; 177(6):3515-3519. https://doi.org/10.4049/jimmunol.177.6.3515
Caetano BC, Carmo BB, Melo MB, Cerny A, dos Santos SL, Bartholomeu DC, Golenbock DT and Gazzinelli RT. Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi. Journal of immunology. 2011; 187(4):1903-1911. https://doi.org/10.4049/jimmunol.1003911
Nagajyothi F, Desruisseaux MS, Machado FS, Upadhya R, Zhao D, Schwartz GJ, Teixeira MM, Albanese C, Lisanti MP, Chua SC, Jr., Weiss LM, Scherer PE and Tanowitz HB. Response of adipose tissue to early infection with Trypanosoma cruzi (Brazil strain). J Infect Dis. 2012; 205(5):830-840. https://doi.org/10.1093/infdis/jir840
Gazzinelli RT and Denkers EY. Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nature reviews Immunology. 2006; 6(12):895- 906. https://doi.org/10.1038/nri1978
Ponce NE, Carrera-Silva EA, Pellegrini AV, Cazorla SI, Malchiodi EL, Lima AP, Gea S and Aoki MP. Trypanosoma cruzi, the causative agent of Chagas disease, modulates interleukin-6-induced STAT3 phosphorylation via gp130 cleavage in different host cells. Biochimica et biophysica acta. 2013; 1832(3):485-494. https://doi.org/10.1016/j.bbadis.2012.12.003
Chan MM, Evans KW, Moore AR and Fong D. Peroxisome proliferator-activated receptor (PPAR): balance for survival in parasitic infections. Journal of biomedicine & biotechnology. 2010; 2010:828951. https://doi.org/10.1155/2010/828951
Odegaard JI and Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science. 2013; 339(6116):172-177. 152. Ross R. Atherosclerosis is an inflammatory disease. American heart journal. 1999; 138(5 Pt 2):S419-420. https://doi.org/10.1126/science.1230721
Cano RC, Hliba E and Rubiolo ER. Creatine kinase and lactate dehydrogenase levels as potential indicators of Trypanosoma cruzi infectivity and histotropism in experimental Chagas' disease. Parasitology research. 2000; 86(3):244-252. https://doi.org/10.1007/s004360050038
Heinrich PC, Castell JV and Andus T. Interleukin-6 and the acute phase response. The Biochemical journal. 1990; 265(3):621-636. https://doi.org/10.1042/bj2650621
Bresnahan KA and Tanumihardjo SA. Undernutrition, the acute phase response to infection, and its effects on micronutrient status indicators. Advances in nutrition. 2014; 5(6):702-711. https://doi.org/10.3945/an.114.006361
Yang Z and Ming XF. CD36: the common soil for inflammation in obesity and atherosclerosis? Cardiovascular research. 2011; 89(3):485-486. https://doi.org/10.1093/cvr/cvq406
Onofrio LI, Arocena AR, Paroli AF, Cabalen ME, Andrada MC, Cano RC and Gea S. Trypanosoma cruzi infection is a potent risk factor for non-alcoholic steatohepatitis enhancing 144 local and systemic inflammation associated with strong oxidative stress and metabolic disorders. PLoS Negl Trop Dis. 2015; 9(2):e0003464. https://doi.org/10.1371/journal.pntd.0003464
Lutz TA and Woods SC. Overview of animal models of obesity. Current protocols in pharmacology / editorial board, SJ Enna. 2012; Chapter 5:Unit5 61. https://doi.org/10.1002/0471141755.ph0561s58
Carrera-Silva EA, Cano RC, Guinazu N, Aoki MP, Pellegrini A and Gea S. TLR2, TLR4 and TLR9 are differentially modulated in liver lethally injured from BALB/c and C57BL/6 mice during Trypanosoma cruzi acute infection. Molecular immunology. 2008; 45(13):3580- 3588. https://doi.org/10.1016/j.molimm.2008.05.004
Monteiro WM, Margioto Teston AP, Gruendling AP, dos Reis D, Gomes ML, de Araujo SM, Bahia MT, Magalhaes LK, de Oliveira Guerra JA, Silveira H, Toledo MJ and Vale Barbosa M. Trypanosoma cruzi I and IV stocks from Brazilian Amazon are divergent in terms of biological and medical properties in mice. PLoS neglected tropical diseases. 2013; 7(2):e2069. https://doi.org/10.1371/journal.pntd.0002069
Parasuraman S, Raveendran R and Kesavan R. Blood sample collection in small laboratory animals. Journal of pharmacology & pharmacotherapeutics. 2010; 1(2):87-93. https://doi.org/10.4103/0976-500X.72350
Trinder P. Determination of blood glucose using 4-amino phenazone as oxygen acceptor. Journal of clinical pathology. 1969; 22(2):246. https://doi.org/10.1136/jcp.22.2.246-b
Singh Y, Lakshmy R, Gupta R and Kranthi V. A rapid 3% polyacrylamide slab gel electrophoresis method for high through put screening of LDL phenotype. Lipids in health and disease. 2008; 7:47. https://doi.org/10.1186/1476-511X-7-47
Engelman JA, Berg AH, Lewis RY, Lisanti MP and Scherer PE. Tumor necrosis factor alpha-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes. Molecular endocrinology. 2000; 14(10):1557-1569. https://doi.org/10.1210/mend.14.10.0542
Liu J, Hu S, Cui Y, Sun MK, Xie F, Zhang Q and Jin J. Saturated fatty acids upregulate COX-2 expression in prostate epithelial cells via toll-like receptor 4/NF-kappaB signaling. Inflammation. 2014; 37(2):467-477. https://doi.org/10.1007/s10753-013-9760-6
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 1976; 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Ohkawa H, Ohishi N and Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry. 1979; 95(2):351-358. https://doi.org/10.1016/0003-2697(79)90738-3
Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R and Bouloumie A. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes. 2004; 53(5):1285-1292. https://doi.org/10.2337/diabetes.53.5.1285
Mattos KA, Lara FA, Oliveira VG, Rodrigues LS, D'Avila H, Melo RC, Manso PP, Sarno EN, Bozza PT and Pessolani MC. Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cellular microbiology. 2011; 13(2):259-273. https://doi.org/10.1111/j.1462-5822.2010.01533.x
D'Avila H, Freire-de-Lima CG, Roque NR, Teixeira L, Barja-Fidalgo C, Silva AR, Melo RC, Dosreis GA, Castro-Faria-Neto HC and Bozza PT. Host cell lipid bodies triggered by Trypanosoma cruzi infection and enhanced by the uptake of apoptotic cells are associated with prostaglandin E(2) generation and increased parasite growth. J Infect Dis. 2011; 204(6):951-961. https://doi.org/10.1093/infdis/jir432
Ishimoto T, Lanaspa MA, Le MT, Garcia GE, Diggle CP, Maclean PS, Jackman MR, Asipu A, Roncal-Jimenez CA, Kosugi T, Rivard CJ, Maruyama S, Rodriguez-Iturbe B, Sanchez-Lozada LG, Bonthron DT, Sautin YY, et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109(11):4320-4325. https://doi.org/10.1073/pnas.1119908109
Like AA and Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science. 1976; 193(4251):415-417. https://doi.org/10.1126/science.180605
Singh B, Sharma B, Jaggi AS and Singh N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer's disease type: possible involvement of PPAR-gamma agonistic property. Journal of the renin-angiotensin-aldosterone system : JRAAS. 2013; 14(2):124-136. https://doi.org/10.1177/1470320312459977
Nagajyothi F, Kuliawat R, Kusminski CM, Machado FS, Desruisseaux MS, Zhao D, Schwartz GJ, Huang H, Albanese C, Lisanti MP, Singh R, Li F, Weiss LM, Factor SM, Pessin JE, Scherer PE, et al. Alterations in glucose homeostasis in a murine model of Chagas disease. The American journal of pathology. 2013; 182(3):886-894. https://doi.org/10.1016/j.ajpath.2012.11.027
Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, Yagi N, Ohto U, Kimoto M, Miyake K, Tobe K, Arai H, Kadowaki T and Nagai R. Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell metabolism. 2012; 15(4):518- 533. https://doi.org/10.1016/j.cmet.2012.01.023
Cucak H, Mayer C, Tonnesen M, Thomsen LH, Grunnet LG and Rosendahl A. Macrophage contact dependent and independent TLR4 mechanisms induce beta-cell dysfunction and apoptosis in a mouse model of type 2 diabetes. PloS one. 2014; 9(3):e90685. https://doi.org/10.1371/journal.pone.0090685
Rub A, Arish M, Husain SA, Ahmed N and Akhter Y. Host-lipidome as a potential target of protozoan parasites. Microbes and infection / Institut Pasteur. 2013; 15(10-11):649- 660. https://doi.org/10.1016/j.micinf.2013.06.006
Loffler T, Flunkert S, Havas D, Santha M, Hutter-Paier B, Steyrer E and Windisch M. Impact of ApoB-100 expression on cognition and brain pathology in wild-type and hAPPsl mice. Neurobiology of aging. 2013; 34(10):2379-2388. https://doi.org/10.1016/j.neurobiolaging.2013.04.008
Linton MF, Farese RV, Jr., Chiesa G, Grass DS, Chin P, Hammer RE, Hobbs HH and Young SG. Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). The Journal of clinical investigation. 1993; 92(6):3029-3037. https://doi.org/10.1172/JCI116927
Johndrow C, Nelson R, Tanowitz H, Weiss LM and Nagajyothi F. Trypanosoma cruzi infection results in an increase in intracellular cholesterol. Microbes and infection / Institut Pasteur. 2014; 16(4):337-344. https://doi.org/10.1016/j.micinf.2014.01.001
Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB and Arditi M. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(29):10679-10684. https://doi.org/10.1073/pnas.0403249101
Nagajyothi F, Zhao D, Machado FS, Weiss LM, Schwartz GJ, Desruisseaux MS, Zhao Y, Factor SM, Huang H, Albanese C, Teixeira MM, Scherer PE, Chua SC, Jr. and Tanowitz HB. Crucial role of the central leptin receptor in murine Trypanosoma cruzi (Brazil strain) infection. The Journal of infectious diseases. 2010; 202(7):1104-1113. https://doi.org/10.1086/656189
Truyens C, Torrico F, Angelo-Barrios A, Lucas R, Heremans H, De Baetselier P and Carlier Y. The cachexia associated with Trypanosoma cruzi acute infection in mice is attenuated by anti-TNF-alpha, but not by anti-IL-6 or anti-IFN-gamma antibodies. Parasite immunology. 1995; 17(11):561-568. https://doi.org/10.1111/j.1365-3024.1995.tb00999.x
Smyth MJ, Sparks RL and Wharton W. Proadipocyte cell lines: models of cellular proliferation and differentiation. Journal of cell science. 1993; 106 ( Pt 1):1-9. https://doi.org/10.1242/jcs.106.1.1
Cnop M, Hannaert JC, Hoorens A, Eizirik DL and Pipeleers DG. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001; 50(8):1771-1777. https://doi.org/10.2337/diabetes.50.8.1771
Almeida PE, Carneiro AB, Silva AR and Bozza PT. PPARgamma Expression and Function in Mycobacterial Infection: Roles in Lipid Metabolism, Immunity, and Bacterial Killing. PPAR research. 2012; 2012:383829. https://doi.org/10.1155/2012/383829
Nagajyothi F, Weiss LM, Zhao D, Koba W, Jelicks LA, Cui MH, Factor SM, Scherer PE and Tanowitz HB. High fat diet modulates Trypanosoma cruzi infection associated myocarditis. PLoS neglected tropical diseases. 2014; 8(10):e3118. https://doi.org/10.1371/journal.pntd.0003118
Hovsepian E, Penas F, Mirkin GA and Goren NB. Role of PPARs in Trypanosoma cruzi Infection: Implications for Chagas Disease Therapy. PPAR research. 2012; 2012:528435. https://doi.org/10.1155/2012/528435
