Estudio de los efectos de modificadores del comportamiento reológico y del estado sólido en chocolate y sus ingredientes
Parole chiave:
emulsionantes poliméricos, chocolate, reología, polimorfismo, cristalografía, etilcelulosaAbstract
La producción del chocolate consta de etapas bien definidas. Durante las primeras, el chocolate es un fluido y se lo prepara para convertirlo controladamente en un sólido. El elemento central de este comportamiento es su fase continua grasa: la manteca de cacao (MC). En ella se dispersan sólidos (azúcar y sólidos de cacao) para formar una suspensión que es y debe mantenerse libre de agua; que debe ser fisicoquímicamente favorecida en su preparación; y que luego debe ser estabilizada. En todos estos aspectos juegan un rol fundamental los emulsionantes. En este estudio, se evaluaron moléculas poliméricas con potencial capacidad emulsionante como mejoradoras del comportamiento de flujo de la masa de chocolate fluido, pero que a la vez no entorpezcan la etapa de cristalización polimórfica en su transición líquido-sólido. Ambos aspectos son indisolubles para la obtención de un chocolate con buenos atributos organolépticos y buena resistencia al “fat bloom” como principal e inevitable parámetro de deterioro. Entre los productos evaluados, el copolímero de injerto etilcelulosa (EC) fue el más eficiente, vehiculizado por disolución en una mezcla de triglicéridos de cadena media (TCM). Considerando la complejidad de la matriz chocolate, donde la ausencia de agua constituye quizás la dificultad más grande para su estudio, se recurrió al diseño de emulsiones no acuosas de propilenglicol en aceite para describir los mecanismos fisicoquímicos involucrados en la acción emulsionante de la mezcla EC-TCM. La estabilización exitosa de estas emulsiones permitió postular un modelo de acción posible para la suspensión chocolate, basado en la muy buena actividad de superficie de la EC. Esta condición de anhidro del chocolate fue aprovechada para vehiculizar principios activos poco solubles en agua. En esta tesis se demostró que la manteca de cacao no sólo es un buen solvente para estas drogas, sino también que su transición líquido-sólido sirvió para el diseño de dos formulaciones terapéuticas: un antiparasitario de uso humano y animal (mebendazol), y un regulador estral porcino (altrenogest). Además de la obtención de formulados homogéneos, estudios de estabilidad demostraron que la matriz chocolate no afecta el polimorfismo del mebendazol, y protege al altrenogest de su fotosensibilidad.Downloads
Riferimenti bibliografici
Beckett, S. T. Traditional chocolate making. En Industrial chocolate manufacture and use; Beckett S. T., Ed.; Chapman & Hall; London, 1994; pp 1-7. https://doi.org/10.1007/978-1-4615-2111-2_1
Afoakwa, E. O. Chocolate production and consumption patterns. En Chocolate Science and Technology; Afoakwa E. O., Ed.; Wiley-Blackwell; United Kingdom, 2010; pp 1-11. https://doi.org/10.1002/9781444319880.ch1
Bolenz, S.; Thiessenhusen, T.; Schäpe, R. Fast conching for milk chocolate. Eur. Food Res. Technol. 2003, 218, 62-67. https://doi.org/10.1007/s00217-003-0790-4
Jolly, M. S.; Blackburn, S.; Beckett, S. T. Energy reduction during chocolate conching using a reciprocating multihole extruder. J. Food Eng. 2003, 59, 137-142. https://doi.org/10.1016/S0260-8774(02)00443-0
Engmann, J.; Mackley, M. R. Semi-solid processing of chocolate and cocoa butter. The Experimental Correlation of Process Rheology with Microstructure. Food Bioprod. Process. 2006, 84 (C2), 95-101. https://doi.org/10.1205/fbp.05104
Niediek, E. A. Particle size reduction. En Industrial chocolate manufacture and use; Beckett S. T., Ed.; Chapman & Hall; London, 1994; pp 83-101. https://doi.org/10.1007/978-1-4615-2111-2_7
International Cocoa Organization (ICCO). http://www.icco.org/statistics/production-andgrindings/production.html. (Consultado: febrero de 2015).
Gloria, H.; Sievert, D. Changes in the physical state of sucrose during dark chocolate processing. J. Agric. Food Chem. 2001, 49, 2433-2436. https://doi.org/10.1021/jf0008240
Do, T-A. L.; Hargreaves, J. M.; Wolf, B.; Hort, J.; Mitchell, J. R. Impact of particle size distribution on rheological and textural properties of chocolate models with reduced fat content. J. Food Sci. E: Food Eng. Phys. Prop. 2007, 72 (9), E541-E552. https://doi.org/10.1111/j.1750-3841.2007.00572.x
Fowler, M. Factors influencing rheological and textural qualities in chocolate - a review. Trends Food Sci. Technol. 2007, 18, 290-298. https://doi.org/10.1016/j.tifs.2007.02.002
Kleinert, J. Cleaning, roasting and winnowing. En Industrial chocolate manufacture and use; Beckett S. T., Ed.; Chapman & Hall; London, 1994; pp 55-69. https://doi.org/10.1007/978-1-4615-2111-2_5
(11) Afoakwa E. O.; Paterson, A.; Fowler, M. Factors influencing rheological and textural qualities in chocolate - a review. Trends Food Sci. Technol. 2007, 18, 290-298. https://doi.org/10.1016/j.tifs.2007.02.002
Afoakwa, E. O. Industrial chocolate manufacture - processes and factors influencing quality. En Chocolate Science and Technology; Afoakwa E. O., Ed.; Wiley-Blackwell; United Kingdom, 2010; pp 35-57. https://doi.org/10.1002/9781444319880.ch3
Krüger, Ch. Sugar. En Industrial chocolate manufacture and use; Beckett S. T., Ed.; Chapman & Hall; London, 1994; pp 25-42. https://doi.org/10.1007/978-1-4615-2111-2_3
Ley, D. Conching. En Industrial chocolate manufacture and use; Beckett S. T., Ed.; Chapman & Hall; London, 1994; pp 117-138. https://doi.org/10.1007/978-1-4615-2111-2_9
Schenk, H.; Peschar, R. Understanding the structure of chocolate. Radiat. Phys. Chem. 2004, 71, 829-835. https://doi.org/10.1016/j.radphyschem.2004.04.105
Van Vliet, T. Rheological classification or foods and instrumental techniques for their study. En Food texture. Measurement and perception; Rosenthal A. J., Ed.; Aspen Publishers; Maryland, 1999; pp 65-98.
International Confectionery Association (ICA). Viscosity of cocoa and chocolate products. Analytical Method 46. Belgium, 2012.
Chevalley, J. Chocolate flow properties. En Industrial chocolate manufacture and use; Beckett S. T., Ed.; Chapman & Hall; London, 1994; pp 139-155. https://doi.org/10.1007/978-1-4615-2111-2_10
Tanner, R. I.; Walters, K. Interlude: Rheology Becomes an Independent Science: Societies, Congresses and Journals. En Rheology: An Historical Perspective; Elsevier Science, Ed.; Elsevier; Amsterdam, 1999; 43-71. https://doi.org/10.1016/S0169-3107(98)80004-X
Van Vliet, T.; Lyklema, H. Rheology. En Fundamentals of Interface and Colloid Science; Lyklema H., Ed.; Elsevier; Amsterdam, 2005; pp 6.1-6.88. https://doi.org/10.1016/S1874-5679(05)80024-8
Shaw, D. J. Rheology. En Introduction to Colloid and Surface Chemistry; ButterworthHeinemann, Ed.; Elsevier; Amsterdam, 1992; pp 244-261. https://doi.org/10.1016/B978-0-08-050910-5.50013-X
Picout, D. R.; Ross-Murphy, S. B. Rheology of Biopolymer Solutions and Gels. Sci. World J. 2003, 3, 105-121. https://doi.org/10.1100/tsw.2003.15
Tanner, R. I. The changing face of rheology. J. Non-Newtonian Fluid Mech. 2009, 157, 141-144. https://doi.org/10.1016/j.jnnfm.2008.11.007
Malkin, A. Y.; Isayev, A. I. Introduction. Rheology: Subject and Goals. En Rheology Concepts, Methods, and Applications; ChemTec Publishing, Ed.; Elsevier; Amsterdam, 2012; pp 1-8. https://doi.org/10.1016/B978-1-895198-49-2.50005-0
Dobraszczyk, B. J.; Vincent J. F. V. Measurement of mechanical properties of food materials in relation to texture: The materials approach. En Food texture. Measurement and perception; Rosenthal A. J., Ed.; Aspen Publishers; Maryland, 1999; pp 99-151.
Bair, S. An Introduction to the Rheology of Polymeric Liquids. En High Pressure Rheology for Quantitative Elastohydrodynamics; Briscoe, B. J., Ed.; Elsevier; Amsterdam, 2007; pp 15-34. https://doi.org/10.1016/S0167-8922(07)80007-1
Afoakwa E. O.; Paterson, A.; Fowler, M.; Vieira, J. Comparison of rheological models for determining dark chocolate viscosity. Int. J. Food Sci. Technol. 2009, 44, 162-167. https://doi.org/10.1111/j.1365-2621.2008.01710.x
Fischer, P.; Pollard, M.; Erni, P.; Marti, I.; Padar, S. Rheological approaches to food systems. C. R. Phys. 2009, 10, 740-750. https://doi.org/10.1016/j.crhy.2009.10.016
Gonçalves, E. V.; Da Silva Lannes, S. C. Chocolate rheology. Cienc. Tecnol. Aliment. (Campinas, Braz.). 2010, 30 (4), 845-851. https://doi.org/10.1590/S0101-20612010000400002
Fernandes, V. A.; Müller, A. J.; Sandoval, A. J. Thermal, structural and rheological characteristics of dark chocolate with different compositions. J. Food Eng. 2013, 116, 97- 108. https://doi.org/10.1016/j.jfoodeng.2012.12.002
Weyland, M.; Hartel, R. Emulsifiers in confectionery. En Food emulsifiers and their applications; Hasenhuettl, G. L. & Hartel, R. W., Ed.; Springer; New York, 2010; pp 285-305. Hasenhuettl, G. L. Overview of Food Emulsifiers. En Food emulsifiers and their applications; Hasenhuettl, G. L. & Hartel, R. W., Ed.; Springer; New York, 2010; pp 1-9. https://doi.org/10.1007/978-0-387-75284-6_10
Schantz, B.; Rohm, H. Influence of lecithin-PGPR blends on the rheological properties of chocolate. LWT-Food Sci. Technol. 2005, 38, 41-45. https://doi.org/10.1016/j.lwt.2004.03.014
Schantz, B.; Linke, L.; Rohm, H. Effect of different emulsifiers on rheological and physical properties of chocolate. En: Proceedings of the 3rd International Symposium on Food Rheology and Structure. Zürich, 2003; pp 329-333. 120
Rousset, P.; Sellappan, P.; Daoud. P. Effect of emulsifiers on surface properties of sucrose by inverse gas chromatography. J. Chromatogr. A. 2002, 969, 97-101. https://doi.org/10.1016/S0021-9673(02)00370-9
Karnjanolarn, R., McCarthy, K. L. Rheology of different formulations of milk chocolate and the effect on coating thickness. J. Texture Stud. 2006, 37, 668-680. https://doi.org/10.1111/j.1745-4603.2006.00077.x
Norton, J. E.; Fryer, P. J.; Parkinson, J.; Cox, P. W. Development and characterisation of tempered cocoa butter emulsions containing up to 60% water. J. Food Eng. 2009, 95, 172-178. https://doi.org/10.1016/j.jfoodeng.2009.04.026
Dickinson, E. Double Emulsions Stabilized by Food Biopolymers. Food Biophys. 2011, 6 (1), 1-11. https://doi.org/10.1007/s11483-010-9188-6
McCarthy, K. L.; McCarthy, M. J. Oil migration in chocolate-peanut butter paste confectionery as a function of chocolate formulation. J. Food Sci. E: Food Eng. Phys. Prop. 2008, 73 (6), 266-273. https://doi.org/10.1111/j.1750-3841.2008.00797.x
Hasenhuettl, G. L. Forecasting the future of food emulsifiers. En Food emulsifiers and their applications; Hasenhuettl G. L. & Hartel R. W., Eds.; Springer; New York, 2010; pp 395 - 402. https://doi.org/10.1007/978-0-387-75284-6_14
Tadros, T. F.; Vincent, B. Emulsion stability. En Encyclopedia of Emulsion Technology; Becher P., Ed.; Marcel Dekker; New York, 1983; pp 129-285.
Walstra, P. Physical principles of emulsion science. En Food Structure and Behaviour; Blanshard J.; Lillford P. J.; Eds., Academic Press; London, 1987; pp 87-106.
Garti, N. What can nature offer from an emulsifier point of view: trends and progress?. Colloids Surf. A. 1999, 152, 125-146. https://doi.org/10.1016/S0927-7757(98)00621-9
Hasenhuettl, G. L. Synthesis and Commercial Preparation of Food Emulsifiers. En Food emulsifiers and their applications; Hasenhuettl G. L. & Hartel R. W., Eds.; Springer; New York, 2010; pp 11-37. https://doi.org/10.1007/978-0-387-75284-6_2
Narsimhan, G.; Wang, Z. Guidelines for Processing Emulsion-Based Foods. En Food emulsifiers and their applications; Hasenhuettl G. L. & Hartel R. W., Eds.; Springer; New York, 2010; pp 349-394. https://doi.org/10.1007/978-0-387-75284-6_13
Daniels, R. Ethylcellulose: A new type of emulsion stabilizer. Eur. J. Pharm. Biopharm. 2003, 56, 23-27. (47) Ushikubo, F. Y. https://doi.org/10.1016/S0939-6411(03)00025-0
Cunha, R. L. Stability mechanisms of liquid water-in-oil emulsions. Food Hydrocoll. 2014, 34, 143-153. https://doi.org/10.1016/j.foodhyd.2012.11.016
Melzer, E.; Kreuter, J.; Daniels, R. Ethylcellulose: A new type of emulsion stabilizer. Eur. J. Pharm. Biopharm. 2003, 56, 23-27. https://doi.org/10.1016/S0939-6411(03)00025-0
(47) Ushikubo, F. Y.; Cunha, R. L. Stability mechanisms of liquid water-in-oil emulsions. Food Hydrocoll. 2014, 34, 143-153. https://doi.org/10.1016/j.foodhyd.2012.11.016
Nylander, T.; Arnebrant, T.; Bos, M.; Wilde, P. Protein/Emulsifier Interactions. En Food emulsifiers and their applications; Hasenhuettl G. L. & Hartel R. W., Eds.; Springer; New York, 2010; pp 89-171. https://doi.org/10.1007/978-0-387-75284-6_5
Tadros, T. F. Emulsion Formation, Stability, and Rheology. En Emulsion Formation and Stability; Tadros T. F., Ed,; Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, 2013; pp 1-75. https://doi.org/10.1002/9783527647941.ch1
Petersen, R. V.; Hamill, R. D. Studies in nonaqueous emulsions. J. Soc. Cosmet. Chem. 1968, 19, 627-640.
Suitthimeathegorn, O.; Jaitely, V.; Florence, A.T. Novel anhydrous emulsions: Formulation as controlled release vehicles. Int. J. Pharm. 2005, 298, 367-371. https://doi.org/10.1016/j.ijpharm.2005.03.028
Atanase, L-I.; Riess, G. Block copolymer stabilized nonaqueous biocompatible submicron emulsions for topical applications. Int. J. Pharm. 2013, 448, 339-345. https://doi.org/10.1016/j.ijpharm.2013.03.051
Patel, N.; Schmid, U.; Lawrence, M. J. Phospholipid-based microemulsions suitable for use in foods. J. Agric. Food Chem. 2006, 54, 7817-7824. https://doi.org/10.1021/jf051288k
Imhof, A.; Pine, D. J. Stability of Nonaqueous Emulsions. J. Colloid Interface Sci. 1997, 192, 368-374. https://doi.org/10.1006/jcis.1997.5020
Sakthivel, T.; Jaitely, V.; Patel, N. V.; Florence, A. T. Non-aqueous emulsions: hydrocarbon-formamide systems. Int. J. Pharm. 2001, 214, 43-48. https://doi.org/10.1016/S0378-5173(00)00629-3
Riess, G.; Cheymol, A.; Hoerner, P.; Krikorian, R. Non-aqueous emulsions stabilized by block copolymers: application to liquid disinfectant-filled elastomeric films. Adv. Colloid Interface Sci. 2004, 108 -109, 43-48. https://doi.org/10.1016/j.cis.2003.10.019
Do, T-A. L.; Mitchell, J. R.; Wolf, B.; Vieira, J. Use of ethylcellulose polymers as stabilizer in fat-based food suspensions examined on the example of model reduced-fat chocolate. React. Funct. Polym. 2010, 70, 856-862. 122 https://doi.org/10.1016/j.reactfunctpolym.2010.07.012
Rutledge, T. F.; Hughes, F. A.; Galvin, T. J.; Zech, J. D. New Polymeric Surfactants from Butadiene, Urea and Sulfuric Acid. J. Am. Oi. Chem. Soc. 1967, 44, 367-371. https://doi.org/10.1007/BF02582661
Kuwamura, T.; Takahashi, H.; Hatori, T. Surface Active Block Copolymers: I. The Preparation and Some Surface Active Properties of Block Copolymers of Tetrahydrofuran and Ethylene Oxide. J. Am. Oil Chem. Soc. 1971, 48, 29-34.
https://doi.org/10.1007/BF02673238
Tadros, T. Polymeric surfactants in disperse systems. Adv. Colloid Interface Sci. 2009, 147-148, 281-299. https://doi.org/10.1016/j.cis.2008.10.005
Xie, H.-Q.; Xie, D. Molecular design, synthesis and properties of block and graft copolymers containing polyoxyethylene segments. Prog. Polym. Sci. 1999, 24, 275-313. https://doi.org/10.1016/S0079-6700(98)00020-3
Hayakawa, K.; Kawaguchi, M.; Kato, T. Protective colloidal effects of hydroxypropyl methyl cellulose on the stability of silicone oil emulsions. Langmuir. 1997, 13, 6069-6073. https://doi.org/10.1021/la970306s
Sun, W.; Sun, D.; Wei, Y.; Liu, S.; Zhang, S. Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: Adsorption and thickening effect. J. Colloid Interface Sci. 2007, 311, 228-236. https://doi.org/10.1016/j.jcis.2007.02.082
Schulz, M.; Daniels, R. Hydroxypropylmethylcellulose (HPMC) as emulsifier for submicron emulsions: influence of molecular weight and substitution type on the droplet size after homogenization. Eur. J. Pharm. Biopharm. 2000, 49, 231-236. https://doi.org/10.1016/S0939-6411(00)00069-2
Alhnan, M. A.; Basit, A. W. Engineering polymer blend microparticles: An investigation into the influence of polymer blend distribution and interaction. Eur. J. Pharm. Sci. 2011, 42, 30-36. https://doi.org/10.1016/j.ejps.2010.10.003
Aiache, J. M.; Gauthier, P.; Aiache, S. New gelification method for vegetable oils I: Cosmetic application. Int. J. Cosmetic Sci. 1992, 14, 228-234. https://doi.org/10.1111/j.1467-2494.1992.tb00056.x
Gravelle, A. J.; Barbut, S.; Marangoni, A. G. Ethylcellulose oleogels: Manufacturing considerations and effects of oil oxidation. Food Res. Int. 2012, 48, 578-583. https://doi.org/10.1016/j.foodres.2012.05.020
Zetzl, A. K.; Marangoni, A. G.; Barbut, S. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct. 2012, 3, 327-337. 123 https://doi.org/10.1039/c2fo10202a
Almeida, I. F.; Bahia, M. F. Evaluation of the physical stability of two oleogels. Int. J. Pharm. 2006, 327, 73-77. https://doi.org/10.1016/j.ijpharm.2006.07.036
Sato, K. Crystallization behaviour of fats and lipids - a review. Chem. Eng. Sci. 2001, 56, 2255-2265. https://doi.org/10.1016/S0009-2509(00)00458-9
Talbot, G. Vegetable fats. En Industrial chocolate manufacture and use; Beckett S. T., Ed.; Chapman & Hall; London, 1994; pp 242-257. https://doi.org/10.1007/978-1-4615-2111-2_14
Van Mechelen, J. B. Triacylglycerol structures and the chocolate fat bloom mechanism. A high resolution powder diffraction study. Tesis Doctoral, University of Amsterdam, The Netherlands, 2008.
Beckett, S. T. Cristalización de la grasa en el chocolate. En La ciencia del chocolate; Beckett, S. T., Ed,; Editorial Acribia (de la edición en español); Zaragoza, España, 2000.
Jovanovic, O.; Pajin, B. Influence of lactic acid ester on chocolate quality. Trends Food Sci. Technol. 2004, 15, 128-136.
https://doi.org/10.1016/j.tifs.2003.09.011
Afoakwa E. O.; Paterson, A.; Fowler, M.; Vieira, J. Effects of tempering and fat crystallisation behaviour on microstructure, mechanical properties and appearance in dark chocolate systems. J. Food Eng. 2008, 89, 128-136.
https://doi.org/10.1016/j.jfoodeng.2008.04.021
Drugs in chocolate paste. Annotations. The Lancet. 1964, 283 (7323), 31. https://doi.org/10.1016/S0140-6736(64)92176-2
Herxheimer, A.; Douglas, M.B. A new method of administering drugs by mouth to animals. J. Pharm. Pharmacol. 1963, 15, 849. https://doi.org/10.1111/j.2042-7158.1963.tb12892.x
Vinson, J.; Hao, Y.; Su, X.; Zubik, L. Phenol antioxidant quantity and quality in foods: Vegetables. J. Agric. Food Chem. 1998, 46, 3630-3634. https://doi.org/10.1021/jf980295o
Vinson, J.; Proch, J.; Zubik, L. Phenol antioxidant quantity and quality in foods: cocoa, dark chocolate, and milk chocolate. J. Agric. Food Chem. 1999, 47(12), 4821-4824. https://doi.org/10.1021/jf990312p
Gu, L.; House, S.; Wu, X.; Ou, B.; Prior, R. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J. Agric. Food Chem. 2006, 54, 4057- 4061. https://doi.org/10.1021/jf060360r
Araujo Pimentel, M.; Nitzke, J.; Klipel, C.; Vogt De Jong, E. Chocolate and red wine - A comparison between flavonoids contents. Food Chem. 2010, 120, 109-112. https://doi.org/10.1016/j.foodchem.2009.09.078
Visioli, F.; Bernaert, H.; Corti, R.; Ferri, C.; Heptinstall, S.; Molinari, E.; Poli, A.; Serafini, M.; Smit, H.; Vinson, J.; Violi, F.; Paoletti, R. Chocolate, lifestyle, and health. Crit. Rev. Food Sci. Nutr. 2009, 49, 299-312. https://doi.org/10.1080/10408390802066805
Grassi, D.; Desideri, G.; Necozione, S.; Lippi, C.; Casale, R.; Properzi, G.; Blumberg, J.; Ferri, C. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J. Nutr. 2008, 138, 1671-1676. https://doi.org/10.1093/jn/138.9.1671
Greenberg, J. A. Chocolate intake and diabetes risk. Clin. Nutr. 2015, 34, 129-133. https://doi.org/10.1016/j.clnu.2014.02.005
Rimbach, G.; Melchin, M.; Moehring, J.; Wagner, A. Polyphenols from cocoa and vascular health - A critical review. Int. J. Mol. Sci. 2009, 10, 4290-4309. https://doi.org/10.3390/ijms10104290
Siew, A.; Van Arnum, P. (Traducción: Segal, M; Arellano, V.). Soluciones para el desafío que plantean los fármacos poco solubles en agua. Pharm. Technol. Sudamérica. 2013, 124, 42-47.
Dayan, A. D. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop. 2003, 86, 141-159. https://doi.org/10.1016/S0001-706X(03)00031-7
Martins, F. T.; Neves, P. P.; Ellena, J.; Camí, G. E.; Brusau, E. V.; Narda, G. E. Intermolecular contacts influencing the conformational and geometric features of the pharmaceutically preferred mebendazole polymorph C. J. Pharm. Sci. 2008, 98 (7), 2336- 2344. https://doi.org/10.1002/jps.21593
Kachrimanis, K.; Rontogianni, M.; Malamataris, S. Simultaneous quantitative analysis of mebendazole polymorphs A-C in powder mixtures by DRIFTS spectroscopy and ANN modeling. J. Pharm. Biomed. Anal. 2010, 51, 512-520. https://doi.org/10.1016/j.jpba.2009.09.001
Kumar, S.; Chawla, G.; Bansal, A. K. Role of additives like polymers and surfactants in the crystallization of mebendazole. Yakugaku Zasshi, J. Pharm. Soc. Jpn. 2008, 128 (2), 281-289. https://doi.org/10.1248/yakushi.128.281
Agatonovic-Kustrin, S.; Glass, B. D., Mangan, M.; Smithson, J. Analysing the crystal purity of mebendazole raw material and its stability in a suspension formulation. Int. J. Pharm. 2008, 361, 245-250. https://doi.org/10.1016/j.ijpharm.2008.04.039
Machnik, M.; Hegger, I.; Kietzmann, M.; Thevis, M.; Guddat, S.; Schänzer, W. Pharmacokinetics of altrenogest in horses. J. Vet. Pharmacol. Ther. 2007, 30, 86-90. https://doi.org/10.1111/j.1365-2885.2007.00820.x
International Confectionery Association (ICA). Manufacturing Process of Small Scale Chocolate Samples. Analytical Method 12. Belgium, 2012.
Ruíz Martínez, Ma. A.; Muñoz De Benavides, M.; Morales Hernández, Ma. E.; Gallardo Lara, V. Influence of the concentration of a gelling agent and the type of surfactant on the rheological characteristics of oleogels. Il Farmaco. 2003, 58, 1289-1294. https://doi.org/10.1016/S0014-827X(03)00180-0
Smith, K. W.; Bhaggan, K.; Talbot, G.; Van Malssen, K. F. Crystallization of Fats: Influence of Minor Components and Additives. J. Am. Oil Chem. Soc. 2011, 88, 1085-1101. https://doi.org/10.1007/s11746-011-1819-7
Garti, N.; Schlichter, J.; Sarig, S. Effect of Food Emulsifiers on Polymorphic Transitions of Cocoa Butter. J. Am. Oil Chem. Soc. 1986, 63 (2), 230-236. https://doi.org/10.1007/BF02546144
Dhonsi, D.; Stapley, A. G. F. The effect of shear rate, temperature, sugar and emulsifier on the tempering of cocoa butter. J. Food Eng. 2006, 77, 936-942. https://doi.org/10.1016/j.jfoodeng.2005.08.022
Miskandar, M. S.; Che Man, Y. B.; Abdul Rahman, R.; Nor Aini, I.; Yusoff, M. S. A. Effects of emulsifiers on crystal behavior of palm oil blends on slow crystallization. J. Food Lipids. 2007, 14, 1-18. https://doi.org/10.1111/j.1745-4522.2006.00064.x
Gauthier, P.; Aiache, S.; Aiache, J. M. Novel glyceride gels II. Viscosity characteristics. Int. J. Cosmet. Sci. 1994, 18, 229-235. https://doi.org/10.1111/j.1467-2494.1996.tb00153.x
Stortz, T. A.; Zetzl, A. K.; Barbut, S.; Cattaruzza, A.; Marangoni, A. G. Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technol. 2012, 24 (7), 151-154. https://doi.org/10.1002/lite.201200205
Morgan, J. Chocolate: a flavor and texture unlike any other. Am. J. Clin. Nutr. 1994, 60, 1065S-1067S. https://doi.org/10.1093/ajcn/60.6.1065S
Bruinsma, K.; Taren, D. L. Chocolate: food or drug?. J. Am. Diet. Assoc. 1999, 99, 1249-1256. https://doi.org/10.1016/S0002-8223(99)00307-7
Hoskin, J. C. Sensory properties of chocolate and their development. Am. J. Clin. Nutr. 1994, 60, 1068S-1070S. https://doi.org/10.1093/ajcn/60.6.1068S
Tannenbaum, G. Chocolate: A Marvelous Natural Product of Chemistry. J. Chem. Educ. 2004, 81(8), 1131-1135. https://doi.org/10.1021/ed081p1131
Windhab, E. What makes for smooth, creamy chocolate. Phys. Today [en línea]. 2006, 59 (6), 82. https://doi.org/10.1063/1.2218569
Gaines, Jr., G. L. Monolayers of polymers. Langmuir. 1991, 7, 834-839. https://doi.org/10.1021/la00053a005
Shapiro, Y. E. Structure and dynamics of hydrogels and organogels: An NMR spectroscopy approach. Prog. Polym. Sci. 2011, 36, 1184-1253. (108) MSD Salud Animal. Regumate® Equinos. http://www.msd-saludanimal.com.ar/products/regumate/productdetails-regumate.aspx. [Consultado: marzo 2015]. https://doi.org/10.1016/j.progpolymsci.2011.04.002
Bouyer, E.; Mekhloufi, G.; Rosilio, V.; Grossiord, J. L.; Agnely, F. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field? Int. J. Pharm. 2012, 436 (1-2), 359-378. https://doi.org/10.1016/j.ijpharm.2012.06.052
Schlichter, J.; Sarig, S.; Garti, N. Polymorphic transformations of cocoa butter in the presence of emulsifier, studied by the DSC. Thermochim. Acta. 1985, 85, 517-520. https://doi.org/10.1016/0040-6031(85)85634-3
Schlichter, J.; Sarig, S.; Garti, N. Mechanistic considerations of polymorphic transformations of triestearin in the presence of emulsifiers. J. Am. Oil Chem. Soc. 1987, 64(4), 529-533. https://doi.org/10.1007/BF02636388
Garti, N.; Sato, K. Effects of surfactants on transition kinetics of stearic acid polymorphs. J. Am. Oil Chem. Soc. 1986, 63 (2), 236-239. https://doi.org/10.1007/BF02546145
Garti, N.; Wellner, E.; Sarig, S. Effect of food emulsifiers on crystal structure and habit of stearic acid. J. Am. Oil Chem. Soc. 1981, 58, 1058-1060. https://doi.org/10.1007/BF02679326
Schlichter, J.; Sarig, S.; Garti, N. Dynamic control of polymorphic transformation in triglycerides by surfactants: the button syndrome. J. Am. Oil Chem. Soc. 1988, 65 (7), 1144- 1150. https://doi.org/10.1007/BF02660571
Garti, N.; Aronhime, J. S.; Sarig, S. The role of chain length and an emulsifier on the polymorphism of mixtures of triglycerides. J. Am. Oil Chem. Soc. 1989, 66 (8), 1085-1089. https://doi.org/10.1007/BF02670089
Garti, N.; Wellner, E.; Sarig, S. Crystal Structure Modifications of Tristearin by Food Emulsifiers. J. Am. Oil Chem. Soc. 1982, 59 (4), 181-185. https://doi.org/10.1007/BF02680272
Schlichter Aronhime, J.; Sarig, S.; Garti, N. Reconsideration of Polymorphic Transformations in Cocoa Butter Using the DSC. J. Am. Oil Chem. Soc. 1988, 65 (7), 1140- 1143. https://doi.org/10.1007/BF02660570
Guth, O. J.; Aronhime, J.; Garti, N. Polymorphic transitions of mixed triglycerides, SOS, in the presence of sorbitan monostearate. J. Am. Oil Chem. Soc. 1989, 66 (11), 1606-1613. https://doi.org/10.1007/BF02636186
Miskandar, M. S.; Che Man, Y. B.; Abdul Rahman, R.; Nor Aini, I.; Yusoff, M. S. A. Effects of emulsifiers on crystallization properties of low-melting blends of palm oil and olein. J. Food Lipids. 2006, 13, 57-72. https://doi.org/10.1111/j.1745-4522.2006.00034.x
Walter, P.; Cornillon, P. Influence of thermal conditions and presence of additives on fat bloom in chocolate. J. Am. Oil Chem. Soc. 2001, 78 (9), 927-932. https://doi.org/10.1007/s11746-001-0365-1
Elisabettini, E.; Desmedt, A.; Durant, F. Polymorphism of stabilized and nonstabilized tristearin, pure and in the presence of food emulsifiers. J. Am. Oil Chem. Soc. 1996, 73 (2), 187-192. https://doi.org/10.1007/BF02523893
Marangoni, A. Novel strategies for nanostructuring liquid oils into functional fats. En: Proceedings of the 5rd International Symposium on Food Rheology and Structure. Zürich, 2009; pp 38-44.
Co, E. D.; Marangoni, A. G. Organogels: an alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 2012, 89, 749-780. https://doi.org/10.1007/s11746-012-2049-3
Wright, A. J.; Hartel, R. W.; Narine, S. S.; Marangoni, A. G. The effect of minor components on milk fat crystallization. J. Am Oil. Chem. Soc. 2000, 77 (5), 463-475. https://doi.org/10.1007/s11746-000-0075-8
Wright, A. J.; Marangoni, A. G. The effect of minor components on milk fat microstructure and mechanical properties. J. Food Sci. 2003, 68 (1), 182-186. https://doi.org/10.1111/j.1365-2621.2003.tb14137.x
Loisel, C.; Lecq, G.; Keller, G.; Ollivon, M. Dynamic crystallization of dark chocolate as affected by temperature and lipid additives. J. Food Sci. 1998, 63 (1), 73-79. https://doi.org/10.1111/j.1365-2621.1998.tb15679.x
Lanzani, A.; Bondioli, P.; Mariani, C.; Folegatti, L.; Venturini, S., Fedeli, E.; Barreteau, P. A. New short-path distillation system applied to the reduction of cholesterol in butter and lard. J. Am. Oil Chem. Soc. 1994, 71 (6), 609-614.
https://doi.org/10.1007/BF02540587
Chronakis, I. S.; Kasapis, S. A rheological study on the application of carbohydrateprotein incompatibility to the development of low fat commercial spreads. Carbohydr. Polym. 1995, 28, 361-313. https://doi.org/10.1016/0144-8617(95)00089-5
Chronakis, I. S. Structural-functional and water-holding studies of biopolymers in low fat content spreads. LWT-Food Sci. Technol. 1997, 30, 36-44. https://doi.org/10.1006/fstl.1996.0126
Kok, L. L.; Fehr, W. R.; Hammond, E. G.; White, P. J. Trans-free margarine from highly saturated soybean oil. J. Am. Oil Chem. Soc. 1999, 76 (10), 1175-1181. https://doi.org/10.1007/s11746-999-0092-5
Costales-Rodríguez, R.; Gibon, V.; Verhé, R.; De Greyt, W. Chemical and enzymatic interesterification of a blend of palm stearin: soybean oil for low trans-margarine formulation. J. Am. Oil Chem. Soc. 2009, 86, 681-697. https://doi.org/10.1007/s11746-009-1395-2






