Oseointegración, aspectos que determinan su éxito. Revisión de la literatura

Autores/as

  • A D Fochini
  • N Leonardi

DOI:

https://doi.org/10.22529/me.2020.5(4)07

Palabras clave:

Oseointegración, implante dental, superficie, diseño

Resumen

El éxito del implante dental depende en gran medida de las características químicas, físicas, mecánicas y topográficas de su superficie; ya que determinan la actividad de las células que se adhieren a la superficie del implante. Por lo tanto, la humectabilidad, geometría, topografía, rugosidad, energía superficial, nanoestructuras y el recubrimiento con materiales bioactivos tienen un impacto sustancial en el éxito y calidad del proceso de oseointegración.Metodología: Se realizó una revisión de la literatura mediante la base de datos de MedLine con el motor de búsqueda Pubmed. Se seleccionaron, una vez aplicados los criterios de inclusión y exclusión, un total de 69 artículos.Resultados: La combinación de estas propiedades determinan la calidad y grado de oseointegración. Valores moderados de hidrofilia (30?-60?) y rugosidad (Sa=1-2?m) favorecen la oseointegración, pero aún se desconocen los mecanismos biológicos subyacentes. La investigación actual sigue los enfoques biomiméticos: imitar la configuración 3D de la superficie ósea.

Referencias

Buser D, Mericske-Stern RD, Bernard JP. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359

implants. Clin Oral Impl Res 1997; 8: 161-72.

Albrektsson, T.; Chrcanovic, B.; Molne, J.; Wennerberg, A. Foreign body reactions,marginal bone loss and allergies in relation to titanium implants. Eur. J. Oral Implantol.2018, 11, S37S46.

Coelho PG, Jimbo R, Tovar N, Bonfante EA. Osseointegration: hierarchicaldesigning encompassing the macrometer, micrometer, and nanometer length scales.Dent Mater. 2015

Jan;31(1):3752.

Salvi GE, Bosshardt DD, Lang NP, Abrahamsson I, et al. Temporal sequence of hardand soft tissue healing around titanium dental implants. Periodontol 2000. 2015Jun;68(1):13552.

Meng H-W, Chien EY, Chien H-H. Dental implant bioactive surface modifications and their effects on osseointegration: a review. Biomark Res. 2016;4(Dec 14):24.

Ogle OE. Implant surface material, design, and osseointegration. Dent Clin NorthAm. 2015 Apr;59(2):50520.

Albertini M, Fernandez-Yague M, Lázaro P, Herrero-Climent M, et al. Advances in surfaces and osseointegration in implantology. Biomimetic surfaces. Med Oral

Patol Oral Cir Bucal. 2015 May 1;20(3):31625.

Adell R, Lekholm U, Rockler B, Branemark PI. 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int. J. Oral Surg. 1981; 10: 387-416.

Branemark R, Branemark PI, Rydevik B, Myers R. Osseointegration in skeletal reconstruction and rehabilitation. A review. J. Rehab. Reseach Dev. 2001; 38 (2): 175-181.

Feller L, Jadwat Y, Khammissa RAG, Meyerov R, et al. Cellular responses evokedby different surface characteristics of intraosseous titanium implants. Biomed Res

Int.2015; 2015:171945.

Annunziata M, Guida L. The Effect of Titanium Surface Modifications on DentalImplant Osseointegration. Front Oral Biol. 2015; 17:6277.

Velasco-Ortega E, Alfonso-Rodríguez CA, Monsalve-Guil L, España-López JiménezGuerra A, et al. Relevant aspects in the surface properties in titanium dentalimplants for the

cellular viability. Mater Sci Eng C Mater Biol Appl. 2016 Jul 1;64(Jul1):110.

Liu P, Hao Y, Zhao Y, Yuan Z, et al. Surface modification of titanium substrates for enhanced osteogenetic and antibacterial properties. Colloids Surf B Biointerfaces.

Dec 1;160(Dec 1):1106

Andrukhov O, Huber R, Shi B, Berner S, Rausch-Fan X, et al. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent Mater.

Nov;32(11):137484.

Sul Y-T, Kang B-S, Johansson C, Um H-S, et al. The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone.

J Biomed Mater Res A. 2009 Jun 15;89(4):94250.

Schmid J, Brunold S, Bertl M, Ulmer H, Kuhn V, et al. Biofunctionalization of onplants to enhance their osseointegration. Int J Stomatol Occlusion Med. 2014 Dec 5;7(4):10510.

Bressan E, Sbricoli L, Guazzo R, Tocco I, et al. Nanostructured surfaces of dental implants. Int J Mol Sci. 2013 Jan 17;14(1):191831. 18. Shibata Y, Tanimoto Y, Maruyama N,

Nagakura M. A review of improved fixation methods for dental implants. Part II: biomechanical integrity at bone-implant interface. J Prosthodont Res. 2015

Apr;59(2):8495.

von Wilmowsky C, Moest T, Nkenke E, Stelzle F, et al. Implants in bone: part I. A current overview about tissue response, surface modifications and future perspectives.

Oral Maxillofac Surg. 2014 Sep;18(3):243 57.

Olivares-Navarrete R, Hyzy SL, Berg ME, Schneider JM, et al. Osteoblast lineage cells can discriminate microscale topographic features on titanium-aluminum-vanadium

surfaces. Ann Biomed Eng. 2014 Dec;42(12):255161.

Smeets R, Stadlinger B, Schwarz F, BeckBroichsitter B, et al. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int. 2016; 2016:6285620.

Dohan Ehrenfest DM, Coelho PG, Kang B-S, Sul Y-T, et al. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 2010 Apr;28(4):198206.

Buser, D.; Janner, S.F.; Wittneben, J.G.; Bragger, U.; et al. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: A

retrospective study in 303partially edentulous patients. Clin. Implant Dent. Relat. Res. 2012; 14: 839851

Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, et al. Surface characteristics of dental implants: A review. Dent Mater. 2018 Jan;34(1):4057.

Shibata Y, Tanimoto Y. A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. J Prosthodont Res.

Jan;59(1):2033.

Olivares-Navarrete R, Rodil SE, Hyzy SL, Dunn GR, et al. Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carboncoated microstructured surfaces. Biomaterials. 2015 May; 51:6979.

Hotchkiss KM, Reddy GB, Hyzy SL, Schwartz Z, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta

Biomater. 2016 Feb;31(Feb):42534.

Gittens RA, Scheideler L, Rupp F, Hyzy SL, et al. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014 Jul;10(7):290718.

Livne S, Marku-Cohen S, Harel N, Piek D, et al. [The influence of dental implant surface on osseointegration: review]. Refuat Hapeh Vehashinayim. 2012 Jan;29(1):416, 66.

Rupp F, Gittens RA, Scheideler L, Marmur A, et al. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater. 2014

Jul;10(7):2894906.

Pegueroles M, Aparicio C, Bosio M, Engel E, et al. Spatialorganization of osteoblast fibronectin matrix on titanium surfaces: effects of roughness, chemical heterogeneity

and surface energy. Acta Biomater. 2010 Jan;6(1):291301.

Gittens RA, Olivares-Navarrete R, Cheng A, Anderson DM, et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human

osteoblast lineage cells. Acta Biomater. 2013 Apr;9(4):626877.

Chan KH, Zhuo S, Ni M. Priming the Surface of Orthopedic Implants for Osteoblast Attachment in Bone Tissue Engineering. Int J Med Sci. 2015;12(9):7017.

Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD. Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants.

Acta Biomater. 2014 Aug;10(8):336371

Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface Modifications and Their Effects on Titanium Dental Implants. Biomed Res Int. 2015; 2015:791725.

Barfeie A, Wilson J, Rees J. Implant surface characteristics and their effect on osseointegration. Br Dent J. 2015 Mar 13;218(5).

Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications: A literature review. Adv Drug Deliv Rev. 2017 Mar;112(Mar):88 100.

Compton JT, Lee FY. A review of osteocyte function and the emerging importance of sclerostin. J Bone Joint Surg Am. 2014 Oct 1;96(19):165968.

Virdi AS, Irish J, Sena K, Liu M, et al. Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis. J Bone Joint Surg Am. 2015 Jan

;97(2):13340.

Stadlinger B, Korn P, Tödtmann N, Eckelt U, et al. Osseointegration of biochemically modified implants in an osteoporosis rodent model. Eur Cell Mater. 2013 Jul 8; 25:326-40-

Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61(1):96578.

Rivera-Chacon DM, Alvarado-Velez M, Acevedo-Morantes CY, Singh SP, et al. Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces. J Biomed Nanotechnol. 2013 Jun;9(6):10927.

Trindade R, Albrektsson T, Galli S, Prgomet Z, et al. Osseointegration and foreign body reaction: titanium implants activate the immune system and suppress bone resorption

during the first 4 weeks after implantation. Clin Implant Dent Relat Res. 2018; 20:82-91

Albrektsson T, Chrcanovic B, Jacobsson M, Wennerberg A. Osseointegration of implantsa biological and clinical overview. JSM Dent Surg. 2017; 2:1-6.

Van Velzen, F.J.; Ofec, R.; Schulten, E.A.; Ten Bruggenkate, C.M. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA

surface: A prospective cohort study in 177 fully and partially edentulous patients. Clin. Oral Implants Res. 2015; 26: 11211128.

Wheelis SE, Montaño-Figueroa AG, Quevedo-Lopez M, Rodrigues DC. Effects of titanium oxide surface properties on boneforming and soft tissue-forming cells. Clin

Implant Dent Relat Res. 2018;20(5): 838-847.

Ramaglia L, Postiglione L, Di Spigna G, Capece G, et al. Sandblastedacid- etched titanium surface influences in vitro the biological behavior of SaOS-2 human

osteoblast-like cells. Dent Mater J. 2011;30(2):18392.

Albrektsson, T., & Wennerberg, A. On osseointegration in relation to implant surfaces. Clinical Implant Dentistry and Related Research. 2019; 21(1):4-7

Al Mustafa M, Agis H, Müller HD, Watzek G, et al. In vitro adhesion of fibroblastic cells to titanium alloy discs treated with sodium hydroxide. Clin Oral Implants Res.

;26(1):15-19.

Yamamura K, Miura T, Kou I, Muramatsu T, et al. Influence of various superhydrophilic treatments of titanium on the initial attachment, proliferation, and differentiation

of osteo-blast-like cells. Dent Mater J. 2015;34(1):120-127.

Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, et al. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011; 22:349-356.

Yeo, I.S.; Min, S.K.; Kang, H.K.; Kwon, T.K, et al. Identification of a bioactive core sequence from human laminin and its applicability to tissue engineering. Biomaterials 2015; 73: 96109.

Pjetursson BE, Thoma D, Jung R, Zwahlen M, et al. A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin Oral Implants Res. 2012 Oct;23 Suppl 6:2238.

Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009 Sep;20 Suppl 4(Sept):17284.

Velasco E, Jos A, Pato J, Camean A, et al. In vitro evaluation of citotoxicity and genotoxixity of comercial titanium alloy for dental implantología. Mutation Res 2010; 702:17-23

Oztel, M.; Bilski, W.M.; Bilski, A. Risk factors associated with dental implant failure: A study of 302 implants placed in a regional center. J. Contemp. Dent. Pract. 2017: 18:705709.

Asensio, G.; Vazquez-Lasa, B.; Rojo, L. Achievements in the Topographic Design of Commercial Titanium Dental Implants: Towards Anti-Peri-Implantitis Surfaces. J. Clin. Med. 2019; 8: 1982.

Nicolau, P.; Guerra, F.; Reis, R.; Krafft, T, et al. 10-year outcomes with immediate and early loaded implants with a chemically modified SLA surface. Quintessence Int. 2018; 50: 212.

Ahn, T.K.; Lee, D.H.; Kim, T.S.; Jang, G.C, et al. Modification of Titanium Implant and Titanium Dioxide for Bone Tissue Engineering. Adv. Exp. Med. Biol. 2018;1077: 355368.

Souza, J.C.M.; Sordi, M.B.; Kanazawa, M.;Ravindran, S, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019; 94: 112131.

Joos U, Wiesmann HP, Szuwart T, Meyer U. Mineralization at the interface of implants. Int. J. Oral Maxillofac. Surg. 2006; 35: 783-790.

Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res. 2010 Feb;21(2):12936.

Kim, S.; Choi, J.Y.; Jung, S.Y.; Kang, H.K, et al. A laminin-derived functional peptide, PPFEGCIWN, promotes bone formation on sandblasted, large-grit, acid-etched titanium implant surfaces. Int. J. Oral Maxillofac. Implants. 2019, 34, 836844

Albrektsson T, Berglundh T, Lindhe J. Osseointegration: Historic background and current concepts. En: Lindhe J, Karring T, Lang N, eds. Clinical Periodontology and Implant Dentistry. Blackwell Munksgaard, 2003: 809-820.

Albrektsson T, Chrcanovic B, Jacobsson M, Wennerberg A. Osseointegration of implantsa biological and clinical overview. JSM Dent Surg. 2017; 2:1-6.

Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007 Jul;23(7):84454.

Avila G, Misch K, Galindo-Moreno P, Wang H-L. Implant surface treatment using biomimetic agents. Implant Dent. 2009 Feb;18(1):1726.

Thakral G, Thakral R, Sharma N, Seth J, et al. Nanosurface - the future of implants. J Clin Diagn Res. 2014 May;8(5): ZE07-10.

Ogawa T. Ultraviolet photofunctionalization of titanium implants. Int J Oral Maxillofac Implants. 2014;29(1): e95-e102.

Publicado

2022-12-01

Número

Sección

Artículos

Cómo citar

Oseointegración, aspectos que determinan su éxito. Revisión de la literatura. (2022). Revista Methodo: Investigación Aplicada a Las Ciencias Biológicas, 5(4), 156-164. https://doi.org/10.22529/me.2020.5(4)07

Artículos similares

1-10 de 30

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a