Los Eleatas: Zenón y Meliso
Resumo
Al infinito en magnitud lo demostró primeramente mediante la misma argumentación. Habiendo pues antes demostrado que «si no tiene magnitud el ser, no existe», arguye «si pues existe, es necesario que cada parte tenga alguna magnitud y grosor y difieran en esto la una de la otra. Y acerca de la precedente, se diga lo mismo. Pues también ella tendrá magnitud, y tendrá delante de sí, otra. Y haber dicho esto una vez es lo mismo que decirlo para siempre. Pues ninguna de las tales partes del mismo será la última, ni dejará de haber una después de otra. Así, si son muchas partes, es necesario que éstas sean pequeñas y grandes: pequeñas, de tal modo que no tengan magnitud; grandes, de modo que sean infinitas» (= infinitamente extensas).Downloads
Os dados de download ainda não estão disponíveis.
Downloads
Publicado
2019-09-19
Edição
Secção
Textos
Como Citar
Los Eleatas: Zenón y Meliso. (2019). Ciencia Y Fe, 6(21), 101-110. https://revistas.bibdigital.uccor.edu.ar/index.php/CF/article/view/4553